J/Ψ (1S) and Ψ (2S) Production in p-p Collisions at E=5.44 TeV >
ISSN: 2689-7636
Annals of Mathematics and Physics
Mini Review       Open Access      Peer-Reviewed

J/Ψ (1S) and Ψ (2S) Production in p-p Collisions at E=5.44 TeV

Leonard S Kisslinger*

Department of Physics, Carnegie Mellon University, Pittsburgh PA 15213, USA
*Corresponding authors: Leonard S Kisslinger, Department of Physics, Carnegie Mellon University, Pittsburgh PA 15213, USA, E-mail: Kissling@andrew.cmu.edu
Received: 14 March, 2023 | Accepted: 19 May, 2023 | Published: 20 May, 2023
Keywords: Heavy quark state production; Relativistic heavy ion collisions; Heavy quark state suppression

Cite this as

Kisslinger LS (2023) J/Ψ (1S) and Ψ (2S) Production in p-p Collisions at E=5.44 TeV. Ann Math Phys 6(1): 063-064. DOI: 10.17352/amp.000080

Copyright Licence

© 2023 Kisslinger LS. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

I estimate the differential rapidity cross sections for J/Ψ and Ψ (2S) via pp (proton-proton) collisions at E=510 GeV. The J/Ψ is a standard charm quark and anti-charm quark, c and while Ψ (2S) is a mixed hybrid c meson. For the Ψ (2S) I use the mixed heavy quark hybrid theory, with states approximately 50% standard and 50% hybrid charmonium.

Introduction

This new work on p-p collisions is based on the heavy quark state production formalism in Pb-Pb collisions at s pp MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaajugibiaadohakmaaBaaaleaajugibiaadchacaWGWbaaleqaaaqabaaaaa@3C55@ = p-p energy = 5.02 TeV [1].

I use the standard model the for J/Ψ state and the mixed hybrid theory [2] for Ψ (2S) the state.

In section 2 heavy quark hybrid states and mixed heavy quark hybrid states are reviewed. The charm quark c is needed with a mass [3] m c MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGTbGcdaWgaaWcbaqcLbsacaWGJbaaleqaaebbfv3ySLgzGueE0jxyaGqbaKqzGeGae83qISdaaa@418D@ 1.27 GeV.

Also, the anti-quark c ¯ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4yayaaraaaaa@388A@ is needed. As discussed in section 2 the state J/Ψ (1S) is |c c ¯ (1S)> MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI8bGaam4yaiqadogagaqeaiaaiIcacaaIXaGaam4uaiaaiMcacaaI+aaaaa@3F41@ while state Ψ (2S) is a mixed hybrid c meson.

In section 3, Ψ production in p-p collisions is reviewed. My new work on heavy quark state production is based on the methods used in heavy quark state production in Cu-Cu and Au-Au collisions at s pp MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaWGZbWaaSbaaSqaaiaadchacaWGWbaabeaaaeqaaaaa@3AA8@ = 200 GeV[4] which used the color octet model [5-7]. Prior to the article [?] Ψ (2S) and Ψ(3S) suppression in p-Pb collisions with E = s pp MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaWGZbWaaSbaaSqaaiaadchacaWGWbaabeaaaeqaaaaa@3AA8@ = 5.02 TeV was estimated [8] and reviewed [9]. Also, the ALICE collaboration studied J/Ψ production via Xe-Xe collisions at s NN MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaWGZbWaaSbaaSqaaiaad6eacaWGobaabeaaaeqaaaaa@3A64@ = 5.44 TeV [10].

Normal and mixed Charmonium States

The starting point of the method of QCD sum rules [11] is the correlator

Π A (x)=|T[ J A (x) J A (0)]|,     (1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHGoaukmaaCaaaleqabaqcLbsacaWGbbaaaiaaiIcacaWG4bGaaGykaiaai2dacqGHPms4caaI8bGaamivaiaaiUfacaWGkbGcdaWgaaWcbaqcLbsacaWGbbaaleqaaKqzGeGaaGikaiaadIhacaaIPaGaamOsaOWaaSbaaSqaaKqzGeGaamyqaaWcbeaajugibiaaiIcacaaIWaGaaGykaiaai2facaaI8bGaeyOkJeVaaGjbVlaaiYcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaaeykaaaa@58E0@

With |〉 the vacuum state and the current JA (x) creates the states with quantum numbers A.

With c, c ¯ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4yayaaraaaaa@388A@ and g a charm quark, an anti-charm quark, and a gluon.

For the normal charmonium state J/Ψ (1S)

J c c ¯ = J c c ¯ ,     (2) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWGJbGabm4yayaaraaaleqaaKqzGeGaaGypaiaadQeakmaaBaaaleaajugibiaadogaceWGJbGbaebaaSqabaqcLbsacaaMe8UaaGilaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabkdacaqGPaaaaa@4904@

while the mixed hybrid charmonium state Ψ (2S) Jc is

J c c ¯ g f J c c ¯ + 1 f 2 J c c ¯ g ,     (3) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWGJbGabm4yayaaraGaam4zaaWcbeaarqqr1ngBPrgifHhDYfgaiuaajugibiab=nKi7iabgkHiTiaadAgacaWGkbGcdaWgaaWcbaqcLbsacaWGJbGabm4yayaaraaaleqaaKqzGeGaey4kaSIcdaGcaaqaaKqzGeGaaGymaiabgkHiTiaadAgakmaaCaaaleqabaqcLbsacaaIYaaaaaWcbeaajugibiaadQeakmaaBaaaleaajugibiaadogaceWGJbGbaebacaWGNbaaleqaaKqzGeGaaGjbVlaaiYcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeykaaaa@5BFF@

where f = 2.

Note that J c c ¯ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWGJbGabm4yayaaraaaleqaaaaa@3C1A@ creates a normal charmonium state J/Ψ (1S) and J c c ¯ g MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWGJbGabm4yayaaraGaam4zaaWcbeaaaaa@3D06@ creates a hybrid state Ψ (2S).

Differential rapidity cross sections for J/Ψ (1S) Production at E= 510 GeV

In the present work I use the theory described in detail in Ref [12] with applications to BNL-RHIC, LHC and Fermilab, based on the octet model [5-7] for pp production of heavy quark states; and used for studies of pp collisions for Upsilon production at forward rapidities [13] and for heavy quark production at 7 TeV [14] and 8 TeV [15]. This calculation is motivated by the report of preliminary data for J/Ψ, Ψ (2S) production via pp collisions at 510 GeV by the PHENIX Collaboration [16].

For helicity λ =0, the differential rapidity cross section is given by [12]

d σ ppΦ(λ=0) dy = A Φ 1 x(y) f g (x(y),2m) f g (a/x(y),2m) dx dy ,       (4) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaajugibiaadsgacqaHdpWCkmaaBaaaleaajugibiaadchacaWGWbGaeyOKH4QaeuOPdyKaaGikaiabeU7aSjaai2dacaaIWaGaaGykaaWcbeaaaOqaaKqzGeGaamizaiaadMhaaaGaaGypaiaadgeakmaaBaaaleaajugibiabfA6agbWcbeaakmaalaaabaqcLbsacaaIXaaakeaajugibiaadIhacaaIOaGaamyEaiaaiMcaaaGaamOzaOWaaSbaaSqaaKqzGeGaam4zaaWcbeaajugibiaaiIcacaWG4bGaaGikaiaadMhacaaIPaGaaGilaiaaikdacaWGTbGaaGykaiaadAgakmaaBaaaleaajugibiaadEgaaSqabaqcLbsacaaIOaGaamyyaiaai+cacaWG4bGaaGikaiaadMhacaaIPaGaaGilaiaaikdacaWGTbGaaGykaOWaaSaaaeaajugibiaadsgacaWG4baakeaajugibiaadsgacaWG5baaaiaaysW7caaISaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqG0aGaaeykaaaa@75F0@

with with a = 4m2/s=3.46×10-5, s =E2, E = 510 GeV, m = 1.5 GeV (for charm quark) and [12] A Φ = 5 π 3 α s 2 288 m 3 s < O 8 Φ ( 1 S 0 )> = 3.1× 10 4 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbbGcdaWgaaWcbaqcLbsacqqHMoGraSqabaqcLbsacaaI9aGcdaWcaaqaaKqzGeGaaGynaiabec8aWPWaaWbaaSqabeaajugibiaaiodaaaGaeqySdeMcdaqhaaWcbaqcLbsacaWGZbaaleaajugibiaaikdaaaaakeaajugibiaaikdacaaI4aGaaGioaiaad2gakmaaCaaaleqabaqcLbsacaaIZaaaaiaadohaaaGaaGipaiaad+eakmaaDaaaleaajugibiaaiIdaaSqaaKqzGeGaeuOPdyeaaiaaiIcakmaaCaaaleqabaqcLbsacaaIXaaaaiaadofakmaaBaaaleaajugibiaaicdaaSqabaqcLbsacaaIPaGaaGOpaiaabccacqGH9aqpcaqGGaGaaG4maiaai6cacaaIXaGaey41aqRaaGymaiaaicdakmaaCaaaleqabaqcLbsacqGHsislcaaI0aaaaaaa@62E8@ = nb. X(y) and dx dy MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaajugibiaadsgacaWG4baakeaajugibiaadsgacaWG5baaaaaa@3D09@ are given by (there was a typo in the numerator of dx(y) dy MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaajugibiaadsgacaWG4bGaaGikaiaadMhacaaIPaaakeaajugibiaadsgacaWG5baaaaaa@3F6C@ , within Ref [12])

x(y)=0.5[ m 510 (expyexp(y))+ ( m 510 (expyexp(y))) 2 +4a ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4bGaaGikaiaadMhacaaIPaGaaGypaiaaicdacaaIUaGaaGynaOWaamWaaeaadaWcaaqaaKqzGeGaamyBaaGcbaqcLbsacaaI1aGaaGymaiaaicdaaaGaaGikaiGacwgacaGG4bGaaiiCaiaadMhacqGHsislciGGLbGaaiiEaiaacchacaaIOaGaeyOeI0IaamyEaiaaiMcacaaIPaGaey4kaSIcdaGcaaqaaKqzGeGaaGikaOWaaSaaaeaajugibiaad2gaaOqaaKqzGeGaaGynaiaaigdacaaIWaaaaiaaiIcaciGGLbGaaiiEaiaacchacaWG5bGaeyOeI0IaciyzaiaacIhacaGGWbGaaGikaiabgkHiTiaadMhacaaIPaGaaGykaiaaiMcakmaaCaaaleqabaqcLbsacaaIYaaaaiabgUcaRiaaisdacaWGHbaaleqaaaGccaGLBbGaayzxaaaaaa@6966@

dx(y) dy = m 1020 (expy+exp(y))[ 1.+ m 510 (expyexp(y)) ( m 510 (expyexp(y))) 2 +4a ].       (5) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaajugibiaadsgacaWG4bGaaGikaiaadMhacaaIPaaakeaajugibiaadsgacaWG5baaaiaai2dakmaalaaabaqcLbsacaWGTbaakeaajugibiaaigdacaaIWaGaaGOmaiaaicdaaaGaaGikaiGacwgacaGG4bGaaiiCaiaadMhacqGHRaWkciGGLbGaaiiEaiaacchacaaIOaGaeyOeI0IaamyEaiaaiMcacaaIPaGcdaWadaqaaKqzGeGaaGymaiaai6cacqGHRaWkkmaalaaabaWaaSaaaeaajugibiaad2gaaOqaaKqzGeGaaGynaiaaigdacaaIWaaaaiaaiIcaciGGLbGaaiiEaiaacchacaWG5bGaeyOeI0IaciyzaiaacIhacaGGWbGaaGikaiabgkHiTiaadMhacaaIPaGaaGykaaGcbaWaaOaaaeaajugibiaaiIcakmaalaaabaqcLbsacaWGTbaakeaajugibiaaiwdacaaIXaGaaGimaaaacaaIOaGaciyzaiaacIhacaGGWbGaamyEaiabgkHiTiGacwgacaGG4bGaaiiCaiaaiIcacqGHsislcaWG5bGaaGykaiaaiMcacaaIPaGcdaahaaWcbeqaaKqzGeGaaGOmaaaacqGHRaWkcaaI0aGaamyyaaWcbeaaaaaakiaawUfacaGLDbaajugibiaaysW7caaIUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqG1aGaaeykaaaa@878C@

The gluonic distribution function fg (x), for s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaWGZbaaleqaaaaa@389D@ =E=510 GeV [12], is

f g (x)1334.2167056.5x+887962.0 x 2 .     (6) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMbGcdaWgaaWcbaqcLbsacaWGNbaaleqaaKqzGeGaaGikaiaadIhacaaIPaqeeuuDJXwAKbsr4rNCHbacfaGae83qISJaaGymaiaaiodacaaIZaGaaGinaiaai6cacaaIYaGaaGymaiabgkHiTiaaiAdacaaI3aGaaGimaiaaiwdacaaI2aGaaGOlaiaaiwdacaWG4bGaey4kaSIaaGioaiaaiIdacaaI3aGaaGyoaiaaiAdacaaIYaGaaGOlaiaaicdacaWG4bGcdaahaaWcbeqaaKqzGeGaaGOmaaaacaaMe8UaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabAdacaqGPaaaaa@6104@

From Eqs(4,2,6) the differential rapidity cross sections for J/Ψ (1S) production via 510 GeV p-p collisions with the standard theory [3] are shown in the figure below.

Conclusion

I have calculated the differential cross sections for pp collisions at 510 GeV for J/Ψ (1S) production with the standard |c c ¯ (1S)> MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI8bGaam4yaiqadogagaqeaiaaiIcacaaIXaGaam4uaiaaiMcacaaI+aaaaa@3F41@ model. As shown in the figure, d σ ppJ/Ψ(1S) dy MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaajugibiaadsgacqaHdpWCkmaaBaaaleaajugibiaadchacaWGWbGaeyOKH4QaamOsaiaai+cacqqHOoqwcaaIOaGaaGymaiaadofacaaIPaaaleqaaaGcbaqcLbsacaWGKbGaamyEaaaarqqr1ngBPrgifHhDYfgaiuaacqWFdjYoaaa@4E46@ 150 nb.

The cross-section for J/Ψ (1S) production in the standard model has been found in pp collision experiments at 200GeV [12].

  1. Kisslinger LS, Das D. Heavy quark state production in Pb-Pb collisions at = 5.02TeV. JHEP; 2017; 09: 105 (2017)
  2. Kisslinger LS. Mixed heavy quark hybrid mesons, decay puzzles, and RHIC. Phys Rev. D. 2009; 79; 114026.
  3. Particle Physics Booklet. 2020.
  4. Kisslinger LS, Liu MX, McGaughey P. Heavy-quark-state production A-A collisions at = 200 GeV. Phys Rev C 2014; 89: 024914.
  5. Cho PL, Leibovich AK. Color-octet quarkonia production. Phys Rev D. 1996; 53: 150.
  6. Braaten E, Chen YQ. Helicity decomposition for inclusive production. Phys Rev D. 1996; 54: 3216.
  7. Braaten E, Fleming S. Color-Octet Fragmentation and the ψ′ Surplus at the Fermilab Tevatron. Phys Rev Lett. 1995; 74: 3327.
  8. Kisslinger LS. Ψ(2S), Υ(3S) Suppression in p-Pb, Pb-Pb Collisions and Mixed Hybrid Theory. Int J Theor Phys. 2016; 55: 1847-1853.
  9. Kisslinger LS, Das D. Int J Mod Phys A. 2016; 13: 1630010.
  10. Acharya S. Inclusive J/ψ production in Xe–Xe collisions at = 5.44TeV. Phys Lett B. 2018; 785: 419.
  11. Shifman MA, Vainstein AI, Zakharov VI. QCD and resonance physics. theoretical foundations. Nucl Phys. B. 1979;147: 385.
  12. Kisslinger LS, Liu MX, McGaughey P. Heavy-quark-state production in p−p collisions. Phys Rev D. 2011; 84: 114020.
  13. Kisslinger LS, Das D. Upsilon production in pp collisions for Forward Rapidities at LHC. Mod Phys Lett A. 2013; 28: 1350067.
  14. Kisslinger LS, Das D. Ψ and Υ Production In pp Collisions at 7.0 TeV. Mod Phys Lett A. 2013; 28: 1350120.
  15. Kisslinger LS, Das D. Mod Phys Lett A. 2014; 29: 1450082.
  16. Durham JM. PHENIX Collaboration. Science Direct. Nuc Phys A. 2014; 1.
  17. Kisslinger LS. Mixed Heavy Quark Hybrid Mesons, Decay Puzzles, and RHIC. Phys Rev. 2009, 79: 114026.
 


Article Alerts

Subscribe to our articles alerts and stay tuned.


Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.



Help ?