Some fixed point results in rectangular metric spaces
ISSN: 2689-7636
Annals of Mathematics and Physics
Research Article       Open Access      Peer-Reviewed

Some fixed point results in rectangular metric spaces

Sarita Devi and Pankaj*

Department of Mathematics, Baba Mastnath University, Asthal Bohar, Rohtak-124021, Haryana, India
*Corresponding authors: Pankaj, Department of Mathematics, Baba Mastnath University, Asthal Bohar, Rohtak-124021, Haryana, India, E-mail: guran.s196@gmail.com, maypankajkumar@gmail.com
Received: 05 July, 2023 | Accepted: 18 July, 2023 | Published: 19 July, 2023
Keywords: α-admissible mappings; Complete rectangular metric space and Fixed point

Cite this as

Devi S, Pankaj (2023) Some fixed point results in rectangular metric spaces. Ann Math Phys 6(2): 108-113. DOI: 10.17352/amp.000089

Copyright Licence

© 2023 Devi S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

After motivation from Geraghty-type contractions and of Farhan, et al. we define α-admissible mappings and demonstrate the fixed point theorems for the above-mentioned contractions in rectangular metric space in this study. In the end, we discuss some consequences of our results as corollaries.

2010 MSC: 47H10, 54H25.

Introduction

Banach provided a method to find the fixed point in the entire metric space in 1922. Since then, numerous researchers have attempted to generalise this idea by working on the Banach fixed point theorem (see [1-9], [11-22],[26,27]). The term " admissible mappings in metric space" pertains to the innovative concepts in mappings that Samet, et al. [27] pioneered in 2012. Recently, in 2013 Farhan, et al. [2] gave new contractions using α MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3929@ -admissible mapping in metric spaces. In continuation of generalization of Banach contraction principle, in 2018, Karapinar introduced the notion of interpolative contraction via revisiting Kannan contraction which involves exponential factors. Combining the interpolative contractions with linear and rational terms several authors defined hybrid contractions and proved fixed point theorems for these contractions see(16,24-25). We'll generalize Farhan's, et al. [2] contractions in the following paper and provide fixed point theorems for them.

Preliminaries

To prove our main results we need some basic definitions from literature as follows:

Definition 2.1: [10] Let MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyynHamaaa@392C@ be a set. A rectangular metric space (RMS) is an ordered pair (,Ω) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOaGaeyynHaSaaGilaiabfM6axjaaiMcaaaa@3DDE@ where is a function Ω:× MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPoWvcaaI6aGaeyynHaSaey41aqRaeyynHaSaeyOKH46efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIuaaa@4CE5@ such that

1. Ω(,ϑ)0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPoWvcaaIOaqeeuuDJXwAKbsr4rNCHbacfaGae83jHOKaaGilaiabeg9akjaaiMcacqGHLjYScaaIWaaaaa@4617@ ,

2. Ω(,ϑ)=0 iff = MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPoWvcaaIOaqeeuuDJXwAKbsr4rNCHbacfaGae83jHOKaaGilaiabeg9akjaaiMcacaaI9aGaaGimaiaabccacaqGPbGaaeOzaiaabAgacaqGGaGae83jHOKaaGypaaaa@4AFA@

3. Ω(,ϑ)=Ω(ϑ,) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPoWvcaaIOaqeeuuDJXwAKbsr4rNCHbacfaGae83jHOKaaGilaiabeg9akjaaiMcacaaI9aGaeuyQdCLaaGikaiabeg9akjaaiYcacqWFNeIscaaIPaaaaa@4AC6@ ,

4. Ω(,ϑ)Ω(,u)+Ω(u,v)+Ω(v,ϑ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPoWvcaaIOaqeeuuDJXwAKbsr4rNCHbacfaGae83jHOKaaGilaiabeg9akjaaiMcacqGHKjYOcqqHPoWvcaaIOaGae83jHOKaaGilaiaadwhacaaIPaGaey4kaSIaeuyQdCLaaGikaiaadwhacaaISaGaamODaiaaiMcacqGHRaWkcqqHPoWvcaaIOaGaamODaiaaiYcacqaHrpGscaaIPaaaaa@58B4@

For all ,ϑ,u,v MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIscaaISaGaeqy0dOKaaGilaiaadwhacaaISaGaamODaiabgIGiolabgwtiadaa@472B@ .

Definition 2.2: [10] A sequence { n } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaarqqr1ngBPrgifHhDYfgaiuaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamOBaaWcbeaaaOGaay5Eaiaaw2haaaaa@4244@ in RMS(,Ω) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsbGaamytaiaadofacaaIOaGaeyynHaSaaGilaiabfM6axjaaiMcaaaa@405F@ is said to converge if there is a point MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIscqGHiiIZcqGH1ecWaaa@416C@ and for every >0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHiiIZcaaI+aGaaGimaaaa@3B99@ there exists N MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGobGaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFveItaaa@4596@ such that Ω( n , )< MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPoWvkmaabmaabaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gaaSqabaqcLbsacaaISaGae83jHOeakiaawIcacaGLPaaajugibiaaiYdacqGHiiIZaaa@48F8@ for every n>N MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUbGaaGOpaiaad6eaaaa@3B21@ .

Definition 2.3: [10] A sequence { n } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaarqqr1ngBPrgifHhDYfgaiuaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamOBaaWcbeaaaOGaay5Eaiaaw2haaaaa@4244@ in a RMS(,Ω) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsbGaamytaiaadofacaaIOaGaeyynHaSaaGilaiabfM6axjaaiMcaaaa@405F@ is Cauchy if for every >0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHiiIZcaaI+aGaaGimaaaa@3B99@ there exists N MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGobGaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFveItaaa@4596@ such that Ω( n , m )< MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPoWvkmaabmaabaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGTbaaleqaaaGccaGLOaGaayzkaaqcLbsacaaI8aGaeyicI4maaa@4ABA@ for every n,m>N.

Definition 2.4: [10] RMS(,Ω) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsbGaamytaiaadofacaaIOaGaeyynHaSaaGilaiabfM6axjaaiMcaaaa@405F@ is said to be complete if every Cauchy sequence is convergent.

Definition 2.5: [27] Let f: MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMbGaaGOoaiabgwtialabgkziUkabgwtiadaa@3F73@ and α:×[0,) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXoqycaaI6aGaeyynHaSaey41aqRaeyynHaSaeyOKH4QaaG4waiaaicdacaaISaGaeyOhIuQaaGykaaaa@46B7@ . We say that f is an α-admissible mapping if α(,ϑ)1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXoqycaaIOaqeeuuDJXwAKbsr4rNCHbacfaGae83jHOKaaGilaiabeg9akjaaiMcacqGHLjYScaaIXaaaaa@4629@ implies α(f,fϑ)1,,ϑ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXoqycaaIOaGaamOzaebbfv3ySLgzGueE0jxyaGqbaiab=DsikjaaiYcacaWGMbGaeqy0dOKaaGykaiabgwMiZkaaigdacaaISaGae83jHOKaaGilaiabeg9akjabgIGiolabgwtiadaa@4F50@ .

Main Results

Theorem 3.1: Let (,Ω) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOaGaeyynHaSaaGilaiabfM6axjaaiMcaaaa@3DDE@ be a complete RMS and T: MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGubGaaGOoaiabgwtialabgkziUkabgwtiadaa@3F61@ be an α - admissible mapping. Assume that there exists a function β:[0,)[0,1] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHYoGycaaI6aGaaG4waiaaicdacaaISaGaeyOhIuQaaGykaiabgkziUkaaiUfacaaIWaGaaGilaiaaigdacaaIDbaaaa@4555@ such that, for any bounded sequence { t n } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaajugibiaadshakmaaBaaaleaajugibiaad6gaaSqabaaakiaawUhacaGL9baaaaa@3D8A@ of positive reals, β( t n )1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHYoGykmaabmaabaqcLbsacaWG0bGcdaWgaaWcbaqcLbsacaWGUbaaleqaaaGccaGLOaGaayzkaaqcLbsacqGHsgIRcaaIXaaaaa@4253@ implies t n 0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0bGcdaWgaaWcbaqcLbsacaWGUbaaleqaaKqzGeGaeyOKH4QaaGimaaaa@3E85@ and (α(,T)α(ϑ,Tϑ)+1) Ω(T,Tϑ) 2 β(M(,ϑ))M(,ϑ)  ,ϑ and l1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOaGaeqySdeMaaGikaebbfv3ySLgzGueE0jxyaGqbaiab=DsikjaaiYcacaWGubGae83jHOKaaGykaiabgwSixlabeg7aHjaaiIcacqaHrpGscaaISaGaamivaiabeg9akjaaiMcacqGHRaWkcaaIXaGaaGykaOWaaWbaaSqabeaajugibiabfM6axjaaiIcacaWGubGae83jHOKaaGilaiaadsfacqaHrpGscaaIPaaaaiabgsMiJkaaikdakmaaCaaaleqabaqcLbsacqaHYoGycaaIOaGaamytaiaaiIcacqWFNeIscaaISaGaeqy0dOKaaGykaiaaiMcacaWGnbGaaGikaiab=DsikjaaiYcacqaHrpGscaaIPaaaaiaabccacqGHaiIicqWFNeIscaaISaGaeqy0dOKaeyicI4SaeyynHaSaaeiiaiaabggacaqGUbGaaeizaiaabccacaWGSbGaeyyzImRaaGymaaaa@7B16@ (3.1).

where: M(,ϑ)=max{Ω(,ϑ),Ω(,T),Ω(ϑ,Tϑ), Ω(,T),Ω(ϑ,Tϑ) Ω(,ϑ) , Ω(,T)(1+Ω(ϑ,Tϑ)) 1+Ω(,ϑ) } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnbGaaGikaebbfv3ySLgzGueE0jxyaGqbaiab=DsikjaaiYcacqaHrpGscaaIPaGaaGypaiGac2gacaGGHbGaaiiEaiaaiUhacqqHPoWvcaaIOaGae83jHOKaaGilaiabeg9akjaaiMcacaaISaGaeuyQdCLaaGikaiab=DsikjaaiYcacaWGubGae83jHOKaaGykaiaaiYcacqqHPoWvcaaIOaGaeqy0dOKaaGilaiaadsfacqaHrpGscaaIPaGaaGilaOWaaSaaaeaajugibiabfM6axjaaiIcacqWFNeIscaaISaGaamivaiab=DsikjaaiMcacaaISaGaeuyQdCLaaGikaiabeg9akjaaiYcacaWGubGaeqy0dOKaaGykaaGcbaqcLbsacqqHPoWvcaaIOaGae83jHOKaaGilaiabeg9akjaaiMcaaaGaaGilaOWaaSaaaeaajugibiabfM6axjaaiIcacqWFNeIscaaISaGaamivaiab=DsikjaaiMcacaaIOaGaaGymaiabgUcaRiabfM6axjaaiIcacqaHrpGscaaISaGaamivaiabeg9akjaaiMcacaaIPaaakeaajugibiaaigdacqGHRaWkcqqHPoWvcaaIOaGae83jHOKaaGilaiabeg9akjaaiMcaaaGaaGyFaaaa@91F1@

Suppose that if T is continuous and there exists 0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIskmaaBaaaleaajugibiaaicdaaSqabaqcLbsacqGHiiIZcqGH1ecWaaa@4385@ such that α( 0 ,T 0 )1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXoqykmaabmaabaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIskmaaBaaaleaajugibiaaicdaaSqabaqcLbsacaaISaGaamivaiab=DsikPWaaSbaaSqaaKqzGeGaaGimaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaeyyzImRaaGymaaaa@4B6A@ , then T has a fixed point.

Proof Let 0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIskmaaBaaaleaajugibiaaicdaaSqabaqcLbsacqGHiiIZcqGH1ecWaaa@4385@ such that α( 0 ,T 0 )1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXoqykmaabmaabaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIskmaaBaaaleaajugibiaaicdaaSqabaqcLbsacaaISaGaamivaiab=DsikPWaaSbaaSqaaKqzGeGaaGimaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaeyyzImRaaGymaaaa@4B6A@ . Construct a sequence { n } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaarqqr1ngBPrgifHhDYfgaiuaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamOBaaWcbeaaaOGaay5Eaiaaw2haaaaa@4244@ in MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGH1ecWaaa@3A35@ as n+1 =T n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gacqGHRaWkcaaIXaaaleqaaKqzGeGaaGypaiaadsfacqWFNeIskmaaBaaaleaajugibiaad6gaaSqabaaaaa@46AF@ , n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHaiIicaWGUbGaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFveItaaa@4686@ .

If n+1 = n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gacqGHRaWkcaaIXaaaleqaaKqzGeGaaGypaiab=DsikPWaaSbaaSqaaKqzGeGaamOBaaWcbeaaaaa@45D6@ , for some n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUbGaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFveItaaa@45B6@ , then T n = n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGubqeeuuDJXwAKbsr4rNCHbacfaGae83jHOKcdaWgaaWcbaqcLbsacaWGUbaaleqaaKqzGeGaaGypaiab=DsikPWaaSbaaSqaaKqzGeGaamOBaaWcbeaaaaa@4512@ and we are done.

So, we suppose that Ω( n , n+1 )>0,n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPoWvkmaabmaabaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaey4kaSIaaGymaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaaGOpaiaaicdacaaISaGaeyiaIiIaamOBaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacgaGae4xfH4eaaa@5A39@ .

Since T is α-admissible, there exists 0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKbsr4rNCHbacfaGae83jHO0aaSbaaSqaaiaaicdaaeqaaOGaeyicI4SaeyynHamaaa@4153@ such that α( 0 ,T 0 )1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaeWaaeaarqqr1ngBPrgifHhDYfgaiuaacqWFNeIsdaWgaaWcbaGaaGimaaqabaGccaaISaGaamivaiab=DsiknaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaiabgwMiZkaaigdaaaa@476C@ which implies α( 0 , 1 )1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaeWaaeaarqqr1ngBPrgifHhDYfgaiuaacqWFNeIsdaWgaaWcbaGaaGimaaqabaGccaaISaGae83jHO0aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaeyyzImRaaGymaaaa@4694@ .

Similarly, we can say that α( 1 , 2 )=α( T 0 , T 2 0 )1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXoqykmaabmaabaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIskmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaaIYaaaleqaaaGccaGLOaGaayzkaaqcLbsacaaI9aGaeqySdeMcdaqadaqaaKqzGeGaamivaiab=DsikPWaaSbaaSqaaKqzGeGaaGimaaWcbeaajugibiaaiYcacaWGubGcdaahaaWcbeqaaKqzGeGaaGOmaaaacqWFNeIskmaaBaaaleaajugibiaaicdaaSqabaaakiaawIcacaGLPaaajugibiabgwMiZkaaigdaaaa@5970@ .

By continuing this process, we get

α( n , n+1 )1, n       (3.2) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXoqykmaabmaabaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaey4kaSIaaGymaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaeyyzImRaaGymaiaaiYcacaqGGaGaeyiaIiIaamOBaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacgaGae4xfH4KaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeOlaiaabkdacaqGPaaaaa@63D4@

By using equation (3.2), we have

2 Ω( T n1 ,T n ) ( α( n1 ,T n1 )α( n ,T n )+1 ) Ω( T n1 ,T n ) 2 β( M( n1 , n ) )M( n1 , n ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqaaeGacaaakeaajugibiaaikdakmaaCaaaleqabaqcLbsacqqHPoWvkmaabmaaleaajugibiaadsfarqqr1ngBPrgifHhDYfgaiuaacqWFNeIskmaaBaaaleaajugibiaad6gacqGHsislcaaIXaaaleqaaKqzGeGaaGilaiaadsfacqWFNeIskmaaBaaaleaajugibiaad6gaaSqabaaacaGLOaGaayzkaaaaaaGcbaqcLbsacqGHKjYOkmaabmaabaqcLbsacqaHXoqykmaabmaabaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gacqGHsislcaaIXaaaleqaaKqzGeGaaGilaiaadsfacqWFNeIskmaaBaaaleaajugibiaad6gacqGHsislcaaIXaaaleqaaaGccaGLOaGaayzkaaqcLbsacqaHXoqykmaabmaabaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gaaSqabaqcLbsacaaISaGaamivaiab=DsikPWaaSbaaSqaaKqzGeGaamOBaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaey4kaSIaaGymaaGccaGLOaGaayzkaaWaaWbaaSqabeaajugibiabfM6axPWaaeWaaSqaaKqzGeGaamivaiab=DsikPWaaSbaaSqaaKqzGeGaamOBaiabgkHiTiaaigdaaSqabaqcLbsacaaISaGaamivaiab=DsikPWaaSbaaSqaaKqzGeGaamOBaaWcbeaaaiaawIcacaGLPaaaaaaakeaaaeaajugibiabgsMiJkaaikdakmaaCaaaleqabaqcLbsacqaHYoGykmaabmaaleaajugibiaad2eakmaabmaaleaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamOBaiabgkHiTiaaigdaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGUbaaleqaaaGaayjkaiaawMcaaaGaayjkaiaawMcaaKqzGeGaamytaOWaaeWaaSqaaKqzGeGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaeyOeI0IaaGymaaWcbeaajugibiaaiYcacqWFNeIskmaaBaaaleaajugibiaad6gaaSqabaaacaGLOaGaayzkaaaaaaaaaaa@9D5D@

Now using equation (3.1), we get

Ω( n , n+1 )β( M( n1 , n ) )M( n1 , n ),       (3.3) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aaeWaaeaarqqr1ngBPrgifHhDYfgaiuaacqWFNeIsdaWgaaWcbaGaamOBaaqabaGccaaISaGae83jHO0aaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaaaOGaayjkaiaawMcaaiabgsMiJkabek7aInaabmaabaGaamytamaabmaabaGae83jHO0aaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaaiYcacqWFNeIsdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacaWGnbWaaeWaaeaacqWFNeIsdaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaaGilaiab=DsiknaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaiaaiYcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaae4maiaabMcaaaa@6600@

Where

M( n1 , n )= max{ Ω( n1 , n ),Ω( n1 ,T n1 ),Ω( n ,T n ), Ω( n1 ,T n1 )Ω( T n , n ) Ω( n1 , n ) Ω( n1 ,T n1 )( 1+Ω( T n , n ) ) 1+Ω( n1 , n ) } =max{ Ω( n1 , n ),Ω( n1 , n ),Ω( n , n+1 ) } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaaqaaiaad2eadaqadaqaaebbfv3ySLgzGueE0jxyaGqbaiab=DsiknaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaaISaGae83jHO0aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaaGypaaqaaiaad2gacaWGHbGaamiEamaacmaabaqbaeqabiqaaaqaaiabfM6axnaabmaabaGae83jHO0aaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaaiYcacqWFNeIsdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaacaaISaGaeuyQdC1aaeWaaeaacqWFNeIsdaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaaGilaiaadsfacqWFNeIsdaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaaGccaGLOaGaayzkaaGaaGilaiabfM6axnaabmaabaGae83jHO0aaSbaaSqaaiaad6gaaeqaaOGaaGilaiaadsfacqWFNeIsdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaacaaISaWaaSaaaeaacqqHPoWvdaqadaqaaiab=DsiknaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaaISaGaamivaiab=DsiknaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaaakiaawIcacaGLPaaacqqHPoWvdaqadaqaaiaadsfacqWFNeIsdaWgaaWcbaGaamOBaaqabaGccaaISaGae83jHO0aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaabaGaeuyQdC1aaeWaaeaacqWFNeIsdaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaaGilaiab=DsiknaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaaaaaeaadaWcaaqaaiabfM6axnaabmaabaGae83jHO0aaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaaiYcacaWGubGae83jHO0aaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaaaOGaayjkaiaawMcaamaabmaabaGaaGymaiabgUcaRiabfM6axnaabmaabaGaamivaiab=DsiknaaBaaaleaacaWGUbaabeaakiaaiYcacqWFNeIsdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaeaacaaIXaGaey4kaSIaeuyQdC1aaeWaaeaacqWFNeIsdaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaaGilaiab=DsiknaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaaaaaaaacaGL7bGaayzFaaaabaGaaGypaiaad2gacaWGHbGaamiEamaacmaabaGaeuyQdC1aaeWaaeaacqWFNeIsdaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaaGilaiab=DsiknaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaiaaiYcacqqHPoWvdaqadaqaaiab=DsiknaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaaISaGae83jHO0aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaaGilaiabfM6axnaabmaabaGae83jHO0aaSbaaSqaaiaad6gaaeqaaOGaaGilaiab=DsiknaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaaakiaawIcacaGLPaaaaiaawUhacaGL9baaaaaaaa@D60D@

Assume that if possible Ω( n , n+1) >Ω( n1 , n ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPoWvkmaabeaabaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaey4kaSIaaGymaiaaiMcaaSqabaqcLbsacaaI+aGaeuyQdCLcdaqadaqaaKqzGeGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaeyOeI0IaaGymaaWcbeaajugibiaaiYcacqWFNeIskmaaBaaaleaajugibiaad6gaaSqabaaakiaawIcacaGLPaaaaiaawIcaaaaa@5717@ .

Then, M( n1 , n )=Ω( n , n+1 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnbGcdaqadaqaaebbfv3ySLgzGueE0jxyaGqbaKqzGeGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaeyOeI0IaaGymaaWcbeaajugibiaaiYcacqWFNeIskmaaBaaaleaajugibiaad6gaaSqabaaakiaawIcacaGLPaaajugibiaai2dacqqHPoWvkmaabmaabaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaey4kaSIaaGymaaWcbeaaaOGaayjkaiaawMcaaaaa@5674@ .

Using this in equation (3.3), we get

Ω( n , n+1 )<β( Ω( n , n+1 ) )Ω( n , n+1 )      (3.4) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPoWvkmaabmaabaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaey4kaSIaaGymaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaaGipaiabek7aIPWaaeWaaeaajugibiabfM6axPWaaeWaaeaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamOBaaWcbeaajugibiaaiYcacqWFNeIskmaaBaaaleaajugibiaad6gacqGHRaWkcaaIXaaaleqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaqcLbsacqqHPoWvkmaabmaabaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaey4kaSIaaGymaaWcbeaaaOGaayjkaiaawMcaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeOlaiaabsdacaqGPaaaaa@6F0D@

Ω( n , n+1 )<Ω( n , n+1 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHshI3cqqHPoWvkmaabmaabaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaey4kaSIaaGymaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaaGipaiabfM6axPWaaeWaaeaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamOBaaWcbeaajugibiaaiYcacqWFNeIskmaaBaaaleaajugibiaad6gacqGHRaWkcaaIXaaaleqaaaGccaGLOaGaayzkaaaaaa@5981@ , which is a contradiction.

So Ω( n , n+1 )Ω( n1 , n ),n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPoWvkmaabmaabaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaey4kaSIaaGymaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaeyizImQaeuyQdCLcdaqadaqaaKqzGeGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaeyOeI0IaaGymaaWcbeaajugibiaaiYcacqWFNeIskmaaBaaaleaajugibiaad6gaaSqabaaakiaawIcacaGLPaaajugibiaaiYcacqGHaiIicaWGUbaaaa@5B26@ .

It follows that the sequence { Ω( n , n+1 ) } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaajugibiabfM6axPWaaeWaaeaarqqr1ngBPrgifHhDYfgaiuaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamOBaaWcbeaajugibiaaiYcacqWFNeIskmaaBaaaleaajugibiaad6gacqGHRaWkcaaIXaaaleqaaaGccaGLOaGaayzkaaaacaGL7bGaayzFaaaaaa@4BB0@ is a monotonically decreasing sequence of positive real numbers. So, it is convergent and suppose that lim n Ω( n , n+1 )=d MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaubeaeqaleaajugibiaad6gacqGHsgIRcqGHEisPaSqabOqaaKqzGeGaciiBaiaacMgacaGGTbaaaiabfM6axPWaaeWaaeaarqqr1ngBPrgifHhDYfgaiuaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamOBaaWcbeaajugibiaaiYcacqWFNeIskmaaBaaaleaajugibiaad6gacqGHRaWkcaaIXaaaleqaaaGccaGLOaGaayzkaaqcLbsacaaI9aGaamizaaaa@53BC@ . Clearly, d0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKbGaeyyzImRaaGimaaaa@3BFC@ .

Claim: d = 0.

Equation (3.4) implies that

Ω( n , n+1 ) Ω( n1 , n ) β( Ω( n1 , n )1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaajugibiabfM6axPWaaeWaaeaarqqr1ngBPrgifHhDYfgaiuaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamOBaaWcbeaajugibiaaiYcacqWFNeIskmaaBaaaleaajugibiaad6gacqGHRaWkcaaIXaaaleqaaaGccaGLOaGaayzkaaaabaqcLbsacqqHPoWvkmaabmaabaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gacqGHsislcaaIXaaaleqaaKqzGeGaaGilaiab=DsikPWaaSbaaSqaaKqzGeGaamOBaaWcbeaaaOGaayjkaiaawMcaaaaajugibiabgsMiJkabek7aIPWaaeqaaeaajugibiabfM6axPWaaeWaaeaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamOBaiabgkHiTiaaigdaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGUbaaleqaaaGccaGLOaGaayzkaaqcLbsacqGHKjYOcaaIXaaakiaawIcaaaaa@6B21@

Which implies that lim n β( Ω( n1 , n )=1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaubeaeqaleaajugibiaad6gacqGHsgIRcqGHEisPaSqabOqaaKqzGeGaciiBaiaacMgacaGGTbaaaiabek7aIPWaaeqaaeaajugibiabfM6axPWaaeWaaeaarqqr1ngBPrgifHhDYfgaiuaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamOBaiabgkHiTiaaigdaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGUbaaleqaaaGccaGLOaGaayzkaaqcLbsacaaI9aGaaGymaaGccaGLOaaaaaa@56A3@ .

Using the property of the function β, we conclude that d = 0, that is

lim n Ω( n , n+1 )=0.      (3.5) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqaleaajugibiaad6gacqGHsgIRcqGHEisPaSqabOqaaKqzGeGaciiBaiaacMgacaGGTbaaaiabfM6axPWaaeWaaeaarqqr1ngBPrgifHhDYfgaiuaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamOBaaWcbeaajugibiaaiYcacqWFNeIskmaaBaaaleaajugibiaad6gacqGHRaWkcaaIXaaaleqaaaGccaGLOaGaayzkaaqcLbsacaaI9aGaaGimaiaai6cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaab6cacaqG1aGaaeykaaaa@5BCE@

In the similar way, we can prove that

lim n Ω( n , n+2 )=0       (3.6) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqaleaajugibiaad6gacqGHsgIRcqGHEisPaSqabOqaaKqzGeGaciiBaiaacMgacaGGTbaaaiabfM6axPWaaeWaaeaarqqr1ngBPrgifHhDYfgaiuaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamOBaaWcbeaajugibiaaiYcacqWFNeIskmaaBaaaleaajugibiaad6gacqGHRaWkcaaIYaaaleqaaaGccaGLOaGaayzkaaqcLbsacaaI9aGaaGimaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaab6cacaqG2aGaaeykaaaa@5BBB@

Now, we will show that { n } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaarqqr1ngBPrgifHhDYfgaiuaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamOBaaWcbeaaaOGaay5Eaiaaw2haaaaa@4244@ is a Cauchy sequence. Suppose, to the contrary that { n } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaarqqr1ngBPrgifHhDYfgaiuaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamOBaaWcbeaaaOGaay5Eaiaaw2haaaaa@4244@ is not a Cauchy sequence. Then there exists >0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHiiIZcaaI+aGaaGimaaaa@3B99@ and sequences m(k) and n(k) such that for all positive integers k, we have n(k)>m(k)>k,Ω( n(k) , m(k) )ϵ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUbGaaGikaiaadUgacaaIPaGaaGOpaiaad2gacaaIOaGaam4AaiaaiMcacaaI+aGaam4AaiaaiYcacqqHPoWvkmaabmaabaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gacaaIOaGaam4AaiaaiMcaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGTbGaaGikaiaadUgacaaIPaaaleqaaaGccaGLOaGaayzkaaqcLbsacqGHLjYStuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGGbciab+v=aYdaa@64A0@ and Ω( n(k) , m(k)1 )<ϵ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPoWvkmaabmaabaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gacaaIOaGaam4AaiaaiMcaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGTbGaaGikaiaadUgacaaIPaGaeyOeI0IaaGymaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaaGipamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacgiGae4x9dipaaa@5B83@ .

By the triangle inequality, we have

Ω( n(k) , m(k) ) Ω( n(k) , m(k)1 )+Ω( m(k)1 , m(k)+1 )+Ω( m(k)1 , m(k) ) <+Ω( m(k)1 , m(k)+1 )+Ω( m(k)1 , m(k) ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqaaeGacaaakeaajugibiabgIGiolabgsMiJkabfM6axPWaaeWaaeaarqqr1ngBPrgifHhDYfgaiuaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamOBaiaaiIcacaWGRbGaaGykaaWcbeaajugibiaaiYcacqWFNeIskmaaBaaaleaajugibiaad2gacaaIOaGaam4AaiaaiMcaaSqabaaakiaawIcacaGLPaaaaeaajugibiabgsMiJkabfM6axPWaaeWaaeaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamOBaiaaiIcacaWGRbGaaGykaaWcbeaajugibiaaiYcacqWFNeIskmaaBaaaleaajugibiaad2gacaaIOaGaam4AaiaaiMcacqGHsislcaaIXaaaleqaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkcqqHPoWvkmaabmaabaqcLbsacqWFNeIskmaaBaaaleaajugibiaad2gacaaIOaGaam4AaiaaiMcacqGHsislcaaIXaaaleqaaKqzGeGaaGilaiab=DsikPWaaSbaaSqaaKqzGeGaamyBaiaaiIcacaWGRbGaaGykaiabgUcaRiaaigdaaSqabaaakiaawIcacaGLPaaajugibiabgUcaRiabfM6axPWaaeWaaeaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamyBaiaaiIcacaWGRbGaaGykaiabgkHiTiaaigdaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGTbGaaGikaiaadUgacaaIPaaaleqaaaGccaGLOaGaayzkaaaabaaabaqcLbsacaaI8aGaeyicI4Saey4kaSIaeuyQdCLcdaqadaqaaKqzGeGae83jHOKcdaWgaaWcbaqcLbsacaWGTbGaaGikaiaadUgacaaIPaGaeyOeI0IaaGymaaWcbeaajugibiaaiYcacqWFNeIskmaaBaaaleaajugibiaad2gacaaIOaGaam4AaiaaiMcacqGHRaWkcaaIXaaaleqaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkcqqHPoWvkmaabmaabaqcLbsacqWFNeIskmaaBaaaleaajugibiaad2gacaaIOaGaam4AaiaaiMcacqGHsislcaaIXaaaleqaaKqzGeGaaGilaiab=DsikPWaaSbaaSqaaKqzGeGaamyBaiaaiIcacaWGRbGaaGykaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaaGilaaaaaaa@B44D@

for all k MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGRbGaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFveItaaa@45B3@ .

Taking the limit as k+ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGRbGaeyOKH4Qaey4kaSIaeyOhIukaaa@3DC3@ in the above inequality and using equations (3.5) and (3.6), we get

lim k+ Ω( n(k) , m(k) )=ϵ.       (3.7) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqaleaajugibiaadUgacqGHsgIRcqGHRaWkcqGHEisPaSqabOqaaKqzGeGaciiBaiaacMgacaGGTbaaaiabfM6axPWaaeWaaeaarqqr1ngBPrgifHhDYfgaiuaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamOBaiaaiIcacaWGRbGaaGykaaWcbeaajugibiaaiYcacqWFNeIskmaaBaaaleaajugibiaad2gacaaIOaGaam4AaiaaiMcaaSqabaaakiaawIcacaGLPaaajugibiaai2datuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGGbciab+v=aYlaai6cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaae4naiaabMcaaaa@6B9F@

Again, by triangle inequality, we have

Ω( n(k) , m(k) )Ω( m(k)1 , m(k) )Ω( n(k)1 , n(k) )Ω( n(k)1 , m(k)1 ) Ω( n(k)1 , m(k)1 )Ω( m(k) , m(k)1 )+Ω( n(k) , m(k) )+Ω( n(k)1 , n(k) ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqaaeGacaaakeaaaeaajugibiabfM6axPWaaeWaaeaarqqr1ngBPrgifHhDYfgaiuaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamOBaiaaiIcacaWGRbGaaGykaaWcbeaajugibiaaiYcacqWFNeIskmaaBaaaleaajugibiaad2gacaaIOaGaam4AaiaaiMcaaSqabaaakiaawIcacaGLPaaajugibiabgkHiTiabfM6axPWaaeWaaeaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamyBaiaaiIcacaWGRbGaaGykaiabgkHiTiaaigdaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGTbGaaGikaiaadUgacaaIPaaaleqaaaGccaGLOaGaayzkaaqcLbsacqGHsislcqqHPoWvkmaabmaabaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gacaaIOaGaam4AaiaaiMcacqGHsislcaaIXaaaleqaaKqzGeGaaGilaiab=DsikPWaaSbaaSqaaKqzGeGaamOBaiaaiIcacaWGRbGaaGykaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaeyizImQaeuyQdCLcdaqadaqaaKqzGeGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaaGikaiaadUgacaaIPaGaeyOeI0IaaGymaaWcbeaajugibiaaiYcacqWFNeIskmaaBaaaleaajugibiaad2gacaaIOaGaam4AaiaaiMcacqGHsislcaaIXaaaleqaaaGccaGLOaGaayzkaaaabaaabaqcLbsacqqHPoWvkmaabmaabaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gacaaIOaGaam4AaiaaiMcacqGHsislcaaIXaaaleqaaKqzGeGaaGilaiab=DsikPWaaSbaaSqaaKqzGeGaamyBaiaaiIcacaWGRbGaaGykaiabgkHiTiaaigdaaSqabaaakiaawIcacaGLPaaajugibiabgsMiJkabfM6axPWaaeWaaeaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamyBaiaaiIcacaWGRbGaaGykaaWcbeaajugibiaaiYcacqWFNeIskmaaBaaaleaajugibiaad2gacaaIOaGaam4AaiaaiMcacqGHsislcaaIXaaaleqaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkcqqHPoWvkmaabmaabaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gacaaIOaGaam4AaiaaiMcaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGTbGaaGikaiaadUgacaaIPaaaleqaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkcqqHPoWvkmaabmaabaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gacaaIOaGaam4AaiaaiMcacqGHsislcaaIXaaaleqaaKqzGeGaaGilaiab=DsikPWaaSbaaSqaaKqzGeGaamOBaiaaiIcacaWGRbGaaGykaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaaGOlaaaaaaa@D22F@

Taking the limit as k+ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGRbGaeyOKH4Qaey4kaSIaeyOhIukaaa@3DC3@ , together with (3.5) - (3.7), we deduce that

lim k+ Ω( n(k)1 , m(k)1 )=ϵ.      (3.8) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqaleaajugibiaadUgacqGHsgIRcqGHRaWkcqGHEisPaSqabOqaaKqzGeGaciiBaiaacMgacaGGTbaaaiabfM6axPWaaeWaaeaarqqr1ngBPrgifHhDYfgaiuaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamOBaiaaiIcacaWGRbGaaGykaiabgkHiTiaaigdaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGTbGaaGikaiaadUgacaaIPaGaeyOeI0IaaGymaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaaGypamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacgiGae4x9diVaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeOlaiaabIdacaqGPaaaaa@6E4D@

From equations (3.1), (3.2), (3.6) and (3.8), we get

2 Ω( n(k)+1 , m(k)+1 ) ( α( n(k) ,T n(k) )α( m(k) ,T m(k) )+1 ) Ω( n(k)+1 , m(k)+1 ) , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIYaGcdaahaaWcbeqaaKqzGeGaeuyQdCLcdaqadaWcbaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gacaaIOaGaam4AaiaaiMcacqGHRaWkcaaIXaaaleqaaKqzGeGaaGilaiab=DsikPWaaSbaaSqaaKqzGeGaamyBaiaaiIcacaWGRbGaaGykaiabgUcaRiaaigdaaSqabaaacaGLOaGaayzkaaaaaKqzGeGaeyizImQcdaqadaqaaKqzGeGaeqySdeMcdaqadaqaaKqzGeGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaaGikaiaadUgacaaIPaaaleqaaKqzGeGaaGilaiaadsfacqWFNeIskmaaBaaaleaajugibiaad6gacaaIOaGaam4AaiaaiMcaaSqabaaakiaawIcacaGLPaaajugibiabeg7aHPWaaeWaaeaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamyBaiaaiIcacaWGRbGaaGykaaWcbeaajugibiaaiYcacaWGubGae83jHOKcdaWgaaWcbaqcLbsacaWGTbGaaGikaiaadUgacaaIPaaaleqaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkcaaIXaaakiaawIcacaGLPaaadaahaaWcbeqaaKqzGeGaeuyQdCLcdaqadaWcbaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gacaaIOaGaam4AaiaaiMcacqGHRaWkcaaIXaaaleqaaKqzGeGaaGilaiab=DsikPWaaSbaaSqaaKqzGeGaamyBaiaaiIcacaWGRbGaaGykaiabgUcaRiaaigdaaSqabaaacaGLOaGaayzkaaaaaKqzGeGaaGilaaaa@8D97@

= ( α( n(k) ,T n(k) )α( m(k) ,T m(k) )+1 ) Ω( T n(k) T m(k) ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI9aGcdaqadaqaaKqzGeGaeqySdeMcdaqadaqaaebbfv3ySLgzGueE0jxyaGqbaKqzGeGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaaGikaiaadUgacaaIPaaaleqaaKqzGeGaaGilaiaadsfacqWFNeIskmaaBaaaleaajugibiaad6gacaaIOaGaam4AaiaaiMcaaSqabaaakiaawIcacaGLPaaajugibiabeg7aHPWaaeWaaeaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamyBaiaaiIcacaWGRbGaaGykaaWcbeaajugibiaaiYcacaWGubGae83jHOKcdaWgaaWcbaqcLbsacaWGTbGaaGikaiaadUgacaaIPaaaleqaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkcaaIXaaakiaawIcacaGLPaaadaahaaWcbeqaaKqzGeGaeuyQdCLcdaqadaWcbaqcLbsacaWGubGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaaGikaiaadUgacaaIPaaaleqaaKqzGeGaamivaiab=DsikPWaaSbaaSqaaKqzGeGaamyBaiaaiIcacaWGRbGaaGykaaWcbeaaaiaawIcacaGLPaaaaaaaaa@747E@

2 β( M( n(k) , m(k) )M( n(k) , m(k) )       (3.9) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHKjYOcaaIYaGcdaahaaWcbeqaaKqzGeGaeqOSdiMcdaqabaWcbaqcLbsacaWGnbGcdaqadaWcbaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gacaaIOaGaam4AaiaaiMcaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGTbGaaGikaiaadUgacaaIPaaaleqaaaGaayjkaiaawMcaaKqzGeGaamytaOWaaeWaaSqaaKqzGeGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaaGikaiaadUgacaaIPaaaleqaaKqzGeGaaGilaiab=DsikPWaaSbaaSqaaKqzGeGaamyBaiaaiIcacaWGRbGaaGykaaWcbeaaaiaawIcacaGLPaaaaiaawIcaaaaakiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeOlaiaabMdacaqGPaaaaa@6898@

M( n(k)1 , m(k)1 )= max{ Ω( n(k)1 , m(k)1 ),Ω( n(k)1 , n(k) ),Ω( m(k)1 , m(k) ), Ω( n(k)1 ,T n(k)1 )Ω( T m(k)1 , m(k)1 ) Ω( n(k)1 , m(k)1 ) , Ω( n(k)1 ,T n(k)1 )( 1+Ω( T m(k)1 , m(k)1 ) ) 1+Ω( n(k)1 , m(k)1 ) }, = max{ Ω( n(k)1 , m(k)1 ),Ω( n(k)1 , n(k) ),Ω( m(k)1 , m(k) ), Ω( n(k)1 , n(k) )Ω( m(k)1 , m(k) ) Ω( n(k)1 , m(k)1 ) , Ω( n(k) , n(k)1 )( 1+Ω( m(k)1 , m(k) ) ) 1+Ω( n(k)1 , m(k)1 ) } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqaaeabcaaaaOqaaaqaaKqzGeGaamytaOWaaeWaaeaarqqr1ngBPrgifHhDYfgaiuaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamOBaiaaiIcacaWGRbGaaGykaiabgkHiTiaaigdaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGTbGaaGikaiaadUgacaaIPaGaeyOeI0IaaGymaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaaGypaaGcbaaabaqcLbsacaWGTbGaamyyaiaadIhakmaacmaabaqcLbsafaqabeGabaaakeaajugibiabfM6axPWaaeWaaeaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamOBaiaaiIcacaWGRbGaaGykaiabgkHiTiaaigdaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGTbGaaGikaiaadUgacaaIPaGaeyOeI0IaaGymaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaaGilaiabfM6axPWaaeWaaeaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamOBaiaaiIcacaWGRbGaaGykaiabgkHiTiaaigdaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaaGikaiaadUgacaaIPaaaleqaaaGccaGLOaGaayzkaaqcLbsacaaISaGaeuyQdCLcdaqadaqaaKqzGeGae83jHOKcdaWgaaWcbaqcLbsacaWGTbGaaGikaiaadUgacaaIPaGaeyOeI0IaaGymaaWcbeaajugibiaaiYcacqWFNeIskmaaBaaaleaajugibiaad2gacaaIOaGaam4AaiaaiMcaaSqabaaakiaawIcacaGLPaaajugibiaaiYcaaOqaamaalaaabaqcLbsacqqHPoWvkmaabmaabaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gacaaIOaGaam4AaiaaiMcacqGHsislcaaIXaaaleqaaKqzGeGaaGilaiaadsfacqWFNeIskmaaBaaaleaajugibiaad6gacaaIOaGaam4AaiaaiMcacqGHsislcaaIXaaaleqaaaGccaGLOaGaayzkaaqcLbsacqqHPoWvkmaabmaabaqcLbsacaWGubGae83jHOKcdaWgaaWcbaqcLbsacaWGTbGaaGikaiaadUgacaaIPaGaeyOeI0IaaGymaaWcbeaajugibiaaiYcacqWFNeIskmaaBaaaleaajugibiaad2gacaaIOaGaam4AaiaaiMcacqGHsislcaaIXaaaleqaaaGccaGLOaGaayzkaaaabaqcLbsacqqHPoWvkmaabmaabaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gacaaIOaGaam4AaiaaiMcacqGHsislcaaIXaaaleqaaKqzGeGaaGilaiab=DsikPWaaSbaaSqaaKqzGeGaamyBaiaaiIcacaWGRbGaaGykaiabgkHiTiaaigdaaSqabaaakiaawIcacaGLPaaaaaqcLbsacaaISaGcdaWcaaqaaKqzGeGaeuyQdCLcdaqadaqaaKqzGeGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaaGikaiaadUgacaaIPaGaeyOeI0IaaGymaaWcbeaajugibiaaiYcacaWGubGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaaGikaiaadUgacaaIPaGaeyOeI0IaaGymaaWcbeaaaOGaayjkaiaawMcaamaabmaabaqcLbsacaaIXaGaey4kaSIaeuyQdCLcdaqadaqaaKqzGeGaamivaiab=DsikPWaaSbaaSqaaKqzGeGaamyBaiaaiIcacaWGRbGaaGykaiabgkHiTiaaigdaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGTbGaaGikaiaadUgacaaIPaGaeyOeI0IaaGymaaWcbeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaqaaKqzGeGaaGymaiabgUcaRiabfM6axPWaaeWaaeaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamOBaiaaiIcacaWGRbGaaGykaiabgkHiTiaaigdaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGTbGaaGikaiaadUgacaaIPaGaeyOeI0IaaGymaaWcbeaaaOGaayjkaiaawMcaaaaaaaaacaGL7bGaayzFaaqcLbsacaaISaaakeaaaeaajugibiaai2daaOqaaaqaaKqzGeGaamyBaiaadggacaWG4bGcdaGadaqaaKqzGeqbaeqabiqaaaGcbaqcLbsacqqHPoWvkmaabmaabaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gacaaIOaGaam4AaiaaiMcacqGHsislcaaIXaaaleqaaKqzGeGaaGilaiab=DsikPWaaSbaaSqaaKqzGeGaamyBaiaaiIcacaWGRbGaaGykaiabgkHiTiaaigdaaSqabaaakiaawIcacaGLPaaajugibiaaiYcacqqHPoWvkmaabmaabaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gacaaIOaGaam4AaiaaiMcacqGHsislcaaIXaaaleqaaKqzGeGaaGilaiab=DsikPWaaSbaaSqaaKqzGeGaamOBaiaaiIcacaWGRbGaaGykaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaaGilaiabfM6axPWaaeWaaeaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamyBaiaaiIcacaWGRbGaaGykaiabgkHiTiaaigdaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGTbGaaGikaiaadUgacaaIPaaaleqaaaGccaGLOaGaayzkaaqcLbsacaaISaGcdaWcaaqaaKqzGeGaeuyQdCLcdaqadaqaaKqzGeGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaaGikaiaadUgacaaIPaGaeyOeI0IaaGymaaWcbeaajugibiaaiYcacqWFNeIskmaaBaaaleaajugibiaad6gacaaIOaGaam4AaiaaiMcaaSqabaaakiaawIcacaGLPaaajugibiabgwSixlabfM6axPWaaeWaaeaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamyBaiaaiIcacaWGRbGaaGykaiabgkHiTiaaigdaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGTbGaaGikaiaadUgacaaIPaaaleqaaaGccaGLOaGaayzkaaaabaqcLbsacqqHPoWvkmaabmaabaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gacaaIOaGaam4AaiaaiMcacqGHsislcaaIXaaaleqaaKqzGeGaaGilaiab=DsikPWaaSbaaSqaaKqzGeGaamyBaiaaiIcacaWGRbGaaGykaiabgkHiTiaaigdaaSqabaaakiaawIcacaGLPaaaaaqcLbsacaaISaaakeaadaWcaaqaaKqzGeGaeuyQdCLcdaqadaqaaKqzGeGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaaGikaiaadUgacaaIPaaaleqaaKqzGeGaaGilaiab=DsikPWaaSbaaSqaaKqzGeGaamOBaiaaiIcacaWGRbGaaGykaiabgkHiTiaaigdaaSqabaaakiaawIcacaGLPaaadaqadaqaaKqzGeGaaGymaiabgUcaRiabfM6axPWaaeWaaeaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamyBaiaaiIcacaWGRbGaaGykaiabgkHiTiaaigdaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGTbGaaGikaiaadUgacaaIPaaaleqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaaabaqcLbsacaaIXaGaey4kaSIaeuyQdCLcdaqadaqaaKqzGeGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaaGikaiaadUgacaaIPaGaeyOeI0IaaGymaaWcbeaajugibiaaiYcacqWFNeIskmaaBaaaleaajugibiaad2gacaaIOaGaam4AaiaaiMcacqGHsislcaaIXaaaleqaaaGccaGLOaGaayzkaaaaaaaaaiaawUhacaGL9baaaaaaaa@C4D4@

Taking k MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGRbGaeyOKH4QaeyOhIukaaa@3CE1@ , we have

M( n(k)1 , m(k)1 )=max{ϵ,0,0,0,0} MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnbGcdaqadaqaaebbfv3ySLgzGueE0jxyaGqbaKqzGeGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaaGikaiaadUgacaaIPaGaeyOeI0IaaGymaaWcbeaajugibiaaiYcacqWFNeIskmaaBaaaleaajugibiaad2gacaaIOaGaam4AaiaaiMcacqGHsislcaaIXaaaleqaaaGccaGLOaGaayzkaaqcLbsacaaI9aGaciyBaiaacggacaGG4bGaaG4Eamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacgiGae4x9diVaaGilaiaaicdacaaISaGaaGimaiaaiYcacaaIWaGaaGilaiaaicdacaaI9baaaa@6710@

So, equation (9) implies that

Ω( n(k)+1 , m(k)+1 )β( M( n(k) , m(k) )M( n(k) , m(k) )1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPoWvkmaabmaabaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gacaaIOaGaam4AaiaaiMcacqGHRaWkcaaIXaaaleqaaKqzGeGaaGilaiab=DsikPWaaSbaaSqaaKqzGeGaamyBaiaaiIcacaWGRbGaaGykaiabgUcaRiaaigdaaSqabaaakiaawIcacaGLPaaajugibiabgsMiJkabek7aIPWaaeqaaeaajugibiaad2eakmaabmaabaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gacaaIOaGaam4AaiaaiMcaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGTbGaaGikaiaadUgacaaIPaaaleqaaaGccaGLOaGaayzkaaqcLbsacaWGnbGcdaqadaqaaKqzGeGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaaGikaiaadUgacaaIPaaaleqaaKqzGeGaaGilaiab=DsikPWaaSbaaSqaaKqzGeGaamyBaiaaiIcacaWGRbGaaGykaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaeyizImQaaGymaaGccaGLOaaaaaa@75E1@

Letting k MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgkziUkabg6HiLcaa@3BD8@ , we get

lim k β( Ω( n(k) , m(k) )=1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaubeaeqaleaajugibiaadUgacqGHsgIRcqGHEisPaSqabOqaaKqzGeGaciiBaiaacMgacaGGTbaaaiabek7aIPWaaeqaaeaajugibiabfM6axPWaaeWaaeaarqqr1ngBPrgifHhDYfgaiuaajugibiab=DsikPWaaSbaaSqaaKqzGeGaamOBaiaaiIcacaWGRbGaaGykaaWcbeaajugibiaaiYcacqWFNeIskmaaBaaaleaajugibiaad2gacaaIOaGaam4AaiaaiMcaaSqabaaakiaawIcacaGLPaaajugibiaai2dacaaIXaaakiaawIcaaaaa@59A1@

By using definition of β function, we get

lim k Ω( n(k) , m(k) )=0< MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHshI3kmaavababeWcbaqcLbsacaWGRbGaeyOKH4QaeyOhIukaleqakeaajugibiGacYgacaGGPbGaaiyBaaaacqqHPoWvkmaabmaabaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIskmaaBaaaleaajugibiaad6gacaaIOaGaam4AaiaaiMcaaSqabaqcLbsacaaISaGae83jHOKcdaWgaaWcbaqcLbsacaWGTbGaaGikaiaadUgacaaIPaaaleqaaaGccaGLOaGaayzkaaqcLbsacaaI9aGaaGimaiaaiYdacqGHiiIZaaa@5BD6@

which is a contradiction.

Hence, { n } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaarqqr1ngBPrgifHhDYfgaiuaacqWFNeIsdaWgaaWcbaGaamOBaaqabaaakiaawUhacaGL9baaaaa@4097@ is a Cauchy sequence.

Since (,Ω) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabgwtialaaiYcacqqHPoWvcaaIPaaaaa@3CD5@ is a complete space, so { n } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaarqqr1ngBPrgifHhDYfgaiuaacqWFNeIsdaWgaaWcbaGaamOBaaqabaaakiaawUhacaGL9baaaaa@4097@ is convergent and assume that n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKbsr4rNCHbacfaGae83jHO0aaSbaaSqaaiaad6gaaeqaaOGaeyOKH4Qae83jHOeaaa@416A@ as n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgkziUkabg6HiLcaa@3BDB@ .

Since T is continuous, then we have

T= lim n T n = lim n n+1 = MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGubqeeuuDJXwAKbsr4rNCHbacfaGae83jHOKaaGypaOWaaybuaeqaleaajugibiaad6gacqGHsgIRcqGHEisPaSqabOqaaKqzGeGaciiBaiaacMgacaGGTbaaaiaadsfacqWFNeIskmaaBaaaleaajugibiaad6gaaSqabaqcLbsacaaI9aGcdaGfqbqabSqaaKqzGeGaamOBaiabgkziUkabg6HiLcWcbeGcbaqcLbsaciGGSbGaaiyAaiaac2gaaaGae83jHOKcdaWgaaWcbaqcLbsacaWGUbGaey4kaSIaaGymaaWcbeaajugibiaai2dacqWFNeIsaaa@5D83@

So, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKbsr4rNCHbacfaGae83jHOeaaa@3D3D@ is a fixed point of T.

Theorem 3.2: Assume that all the hypothesis of Theorem 3.1 hold. Adding the following condition:

If=T,then α(,T)1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGjbGaaeOzaiaai2dacaWGubqeeuuDJXwAKbsr4rNCHbacfaGae83jHOKae8ha3ZIaaiilaiaabshacaqGObGaaeyzaiaab6gacaqGGaGaeqySdeMaaGikaiab=DsikjaaiYcacaWGubGae83jHOKaaGykaiabgwMiZkaaigdaaaa@4F81@

We obtain the uniqueness of fixed point.

Proof: Let z and z * MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaCaaaleqabaGaaGOkaaaaaaa@396A@ be two distinct fixed point of T in the setting of Theorem 3.1 and above defined condition holds, then

α(z,Tz)1 and α( z * ,T z * )1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXoqycaaIOaGaamOEaiaaiYcacaWGubGaamOEaiaaiMcacqGHLjYScaaIXaGaaeiiaiaabggacaqGUbGaaeizaiaabccacqaHXoqykmaabmaabaqcLbsacaWG6bGcdaahaaWcbeqaaKqzGeGaaGOkaaaacaaISaGaamivaiaadQhakmaaCaaaleqabaqcLbsacaaIQaaaaaGccaGLOaGaayzkaaqcLbsacqGHLjYScaaIXaaaaa@5303@

So,

2 Ω( Tz,T z * ) ( 1+α(z,Tz)α( z * ,T z * ) ) Ω( Tz,T z * ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIYaGcdaahaaWcbeqaaKqzGeGaeuyQdCLcdaqadaWcbaqcLbsacaWGubGaamOEaiaaiYcacaWGubGaamOEaOWaaWbaaSqabeaajugibiaaiQcaaaaaliaawIcacaGLPaaaaaqcLbsacqGHKjYOkmaabmaabaqcLbsacaaIXaGaey4kaSIaeqySdeMaaGikaiaadQhacaaISaGaamivaiaadQhacaaIPaGaeqySdeMcdaqadaqaaKqzGeGaamOEaOWaaWbaaSqabeaajugibiaaiQcaaaGaaGilaiaadsfacaWG6bGcdaahaaWcbeqaaKqzGeGaaGOkaaaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaamaaCaaaleqabaqcLbsacqqHPoWvkmaabmaaleaajugibiaadsfacaWG6bGaaGilaiaadsfacaWG6bGcdaahaaWcbeqaaKqzGeGaaGOkaaaaaSGaayjkaiaawMcaaaaaaaa@64FD@

2 β( M( z, z * ) )M( z, z * )        (3.10) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHKjYOcaaIYaGcdaahaaWcbeqaaKqzGeGaeqOSdiMcdaqadaWcbaqcLbsacaWGnbGcdaqadaWcbaqcLbsacaWG6bGaaGilaiaadQhakmaaCaaaleqabaqcLbsacaaIQaaaaaWccaGLOaGaayzkaaaacaGLOaGaayzkaaqcLbsacaWGnbGcdaqadaWcbaqcLbsacaWG6bGaaGilaiaadQhakmaaCaaaleqabaqcLbsacaaIQaaaaaWccaGLOaGaayzkaaaaaOGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeOlaiaabgdacaqGWaGaaeykaaaa@573B@

Where M( z, z * )=max{ Ω( z, z * ),Ω(Tz,z),Ω( T z * ,z ), Ω(z,Tz)Ω( T z * , z * ) Ω( z, z * ) , Ω(z,Tz)( 1+Ω( T z * , z * ) ) 1+Ω( z, z * ) } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnbGcdaqadaqaaKqzGeGaamOEaiaaiYcacaWG6bGcdaahaaWcbeqaaKqzGeGaaGOkaaaaaOGaayjkaiaawMcaaKqzGeGaaGypaiGac2gacaGGHbGaaiiEaOWaaiWaaKqzGeabaeqakeaajugibiabfM6axPWaaeWaaeaajugibiaadQhacaaISaGaamOEaOWaaWbaaSqabeaajugibiaaiQcaaaaakiaawIcacaGLPaaajugibiaaiYcacqqHPoWvcaaIOaGaamivaiaadQhacaaISaGaamOEaiaaiMcacaaISaGaeuyQdCLcdaqadaqaaKqzGeGaamivaiaadQhakmaaCaaaleqabaqcLbsacaaIQaaaaiaaiYcacaWG6baakiaawIcacaGLPaaajugibiaaiYcaaOqaamaalaaabaqcLbsacqqHPoWvcaaIOaGaamOEaiaaiYcacaWGubGaamOEaiaaiMcacqGHflY1cqqHPoWvkmaabmaabaqcLbsacaWGubGaamOEaOWaaWbaaSqabeaajugibiaaiQcaaaGaaGilaiaadQhakmaaCaaaleqabaqcLbsacaaIQaaaaaGccaGLOaGaayzkaaaabaqcLbsacqqHPoWvkmaabmaabaqcLbsacaWG6bGaaGilaiaadQhakmaaCaaaleqabaqcLbsacaaIQaaaaaGccaGLOaGaayzkaaaaaKqzGeGaaGilaOWaaSaaaeaajugibiabfM6axjaaiIcacaWG6bGaaGilaiaadsfacaWG6bGaaGykaOWaaeWaaeaajugibiaaigdacqGHRaWkcqqHPoWvkmaabmaabaqcLbsacaWGubGaamOEaOWaaWbaaSqabeaajugibiaaiQcaaaGaaGilaiaadQhakmaaCaaaleqabaqcLbsacaaIQaaaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaaabaqcLbsacaaIXaGaey4kaSIaeuyQdCLcdaqadaqaaKqzGeGaamOEaiaaiYcacaWG6bGcdaahaaWcbeqaaKqzGeGaaGOkaaaaaOGaayjkaiaawMcaaaaaaaGaay5Eaiaaw2haaaaa@9E5D@

=Ω( z, z * ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI9aGaeuyQdCLcdaqadaqaaKqzGeGaamOEaiaaiYcacaWG6bGcdaahaaWcbeqaaKqzGeGaaGOkaaaaaOGaayjkaiaawMcaaKqzGeGaaGOlaaaa@4289@

So, equation (3.10) implies

Ω( z, z * )=Ω( Tz,T z * )β( Ω( z, z * ) )Ω( z, z * ) β( Ω( z, z * ) )=1 Ω( z, z * )=0z= z * MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeWabaaakeaajugibiabfM6axPWaaeWaaeaajugibiaadQhacaaISaGaamOEaOWaaWbaaSqabeaajugibiaaiQcaaaaakiaawIcacaGLPaaajugibiaai2dacqqHPoWvkmaabmaabaqcLbsacaWGubGaamOEaiaaiYcacaWGubGaamOEaOWaaWbaaSqabeaajugibiaaiQcaaaaakiaawIcacaGLPaaajugibiabgsMiJkabek7aIPWaaeWaaeaajugibiabfM6axPWaaeWaaeaajugibiaadQhacaaISaGaamOEaOWaaWbaaSqabeaajugibiaaiQcaaaaakiaawIcacaGLPaaaaiaawIcacaGLPaaajugibiabfM6axPWaaeWaaeaajugibiaadQhacaaISaGaamOEaOWaaWbaaSqabeaajugibiaaiQcaaaaakiaawIcacaGLPaaaaeaajugibiabgkDiElabek7aIPWaaeWaaeaajugibiabfM6axPWaaeWaaeaajugibiaadQhacaaISaGaamOEaOWaaWbaaSqabeaajugibiaaiQcaaaaakiaawIcacaGLPaaaaiaawIcacaGLPaaajugibiaai2dacaaIXaaakeaajugibiabgkDiElabfM6axPWaaeWaaeaajugibiaadQhacaaISaGaamOEaOWaaWbaaSqabeaajugibiaaiQcaaaaakiaawIcacaGLPaaajugibiaai2dacaaIWaGaeyO0H4TaamOEaiaai2dacaWG6bGcdaahaaWcbeqaaKqzGeGaaGOkaaaaaaaaaa@86AB@

Corollary 3.3: Let (,Ω) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOaGaeyynHaSaaGilaiabfM6axjaaiMcaaaa@3DDE@ be a complete RMS and T: MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGubGaaGOoaiabgwtialabgkziUkabgwtiadaa@3F61@ be an α-admissible mapping. Assume that there exists a function β:[0,)[0,1] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHYoGycaaI6aGaaG4waiaaicdacaaISaGaeyOhIuQaaGykaiabgkziUkaaiUfacaaIWaGaaGilaiaaigdacaaIDbaaaa@4555@ such that, for any bounded sequence { t n } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaajugibiaadshakmaaBaaaleaajugibiaad6gaaSqabaaakiaawUhacaGL9baaaaa@3D8A@ of positive reals, β( t n )1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHYoGykmaabmaabaqcLbsacaWG0bGcdaWgaaWcbaqcLbsacaWGUbaaleqaaaGccaGLOaGaayzkaaqcLbsacqGHsgIRcaaIXaaaaa@4253@ implies t n 0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0bGcdaWgaaWcbaqcLbsacaWGUbaaleqaaKqzGeGaeyOKH4QaaGimaaaa@3E85@ and (α(,T)α(ϑ,Tϑ)+1) Ω(T,Tϑ) 2 β(Ω(,ϑ))Ω(,ϑ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOaGaeqySdeMaaGikaebbfv3ySLgzGueE0jxyaGqbaiab=DsikjaaiYcacaWGubGae83jHOKaaGykaiabgwSixlabeg7aHjaaiIcacqaHrpGscaaISaGaamivaiabeg9akjaaiMcacqGHRaWkcaaIXaGaaGykaOWaaWbaaSqabeaajugibiabfM6axjaaiIcacaWGubGae83jHOKaaGilaiaadsfacqaHrpGscaaIPaaaaiabgsMiJkaaikdakmaaCaaaleqabaqcLbsacqaHYoGycaaIOaGaeuyQdCLaaGikaiab=DsikjaaiYcacqaHrpGscaaIPaGaaGykaiabfM6axjaaiIcacqWFNeIscaaISaGaeqy0dOKaaGykaaaaaaa@6D0C@ for all ,ϑ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIscaaISaGaeqy0dOKaeyicI4SaeyynHamaaa@43CA@ where l1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGSbGaeyyzImRaaGymaaaa@3C05@ . Suppose that if T is continuous and there exists 0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIskmaaBaaaleaajugibiaaicdaaSqabaqcLbsacqGHiiIZcqGH1ecWaaa@4385@ such that α( 0 ,T 0 )1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXoqykmaabmaabaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFNeIskmaaBaaaleaajugibiaaicdaaSqabaqcLbsacaaISaGaamivaiab=DsikPWaaSbaaSqaaKqzGeGaaGimaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaeyyzImRaaGymaaaa@4B6A@ , then T has a fixed point.

Proof: Taking M(,ϑ)=Ω(,ϑ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnbGaaGikaebbfv3ySLgzGueE0jxyaGqbaiab=DsikjaaiYcacqaHrpGscaaIPaGaaGypaiabfM6axjaaiIcacqWFNeIscaaISaGaeqy0dOKaaGykaaaa@4A0A@ in Theorem 3.1, one can get the proof.

Corollary 3.4. Assume that all the hypotheses of Corollary 3.3 hold. Adding the following condition:

(a) If =T, then α(,T)1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGjbGaaeOzaiaabccarqqr1ngBPrgifHhDYfgaiuaacqWFNeIscaaI9aGaamivaiab=DsikjaacYcacaqGGaGaaeiDaiaabIgacaqGLbGaaeOBaiaabccacqaHXoqycaaIOaGae83jHOKaaGilaiaadsfacqWFNeIscaaIPaGaeyyzImRaaGymaaaa@5036@ ,

we obtain the uniqueness of the fixed point of T.

Proof: Taking M(,ϑ)=Ω(,ϑ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnbGaaGikaebbfv3ySLgzGueE0jxyaGqbaiab=DsikjaaiYcacqaHrpGscaaIPaGaaGypaiabfM6axjaaiIcacqWFNeIscaaISaGaeqy0dOKaaGykaaaa@4A0A@ in Corollary 3.3.

  1. Akbar F, Khan AR. Common fixed point and approximation results for noncommuting maps on locally convex spaces. Fixed Point Theory Appl. 2009; 207503.
  2. Farhana A, Peyman S, Nawab H. α-admissible mappings and related fixed point theorems. Journal of Inequalities and Applications. 2013; 2013:114.
  3. Aydi H, Karapinar E, Erhan I. Coupled coincidence point and coupled fixed point theorems via generalized Meir-Keeler type contractions. Abstr Appl Anal. 2012; 781563.
  4. Aydi H, Karapinar E, Shatanawi W, Tripled common fixed point results for generalized contractions in ordered generalized metric spaces. Fixed Point Theory Appl. 2012; 101.
  5. Aydi H, Vetro C, Karapinar E. Meir-Keeler type contractions for tripled fixed points. Acta Math Sci. 2012; 32(6):2119-2130.
  6. Aydi H, Vetro C, Sintunavarat W, Kumam P. Coincidence and fixed points for contractions and cyclical contractions in partial metric spaces. Fixed Point Theory Appl. 2012; 124.
  7. Berinde V. Approximating common fixed points of noncommuting almost contractions in metric spaces. Fixed Point Theory. 2010; 11(2):179-188.
  8. Berinde V. Common fixed points of noncommuting almost contractions in cone metric spaces. Math Commun. 2010; 15(1): 229–241.
  9. Berinde V. Common fixed points of noncommuting discontinuous weakly contractive mappings in cone metric spaces. Taiwan J Math. 2010; 14(5): 1763-1776.
  10. Branciari A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publicationes Mathematicae Debrecen. 2000; 57(1-2): 31-37.
  11. Victor B. Metric spaces: iteration and application”, Cambridge University Press. ISBN 0-521-31897-1, 1985.
  12. Ciric L, Abbas M, Saadati R, Hussain N, Common fixed points of almost generalized contractive mappings in ordered metric spaces. Appl Math Comput. 2011; 217: 5784-5789.
  13. Ciric L, Hussain N, Cakic N. Common fixed points for Ciric type f -weak contraction with applications. Publ Math (Debr.). 2010; 76(1–2): 31-49.
  14. Ciric LB. A generalization of Banach principle. Proc Am Math Soc. 1974; 45: 727-730.
  15. Edelstein M. On fixed and periodic points under contractive mappings. J Lond Math Soc. 1962; 37: 74–79.
  16. Fulga A. On interpolative contractions that involve rational forms. Adv Difference Equ. 2021; 448: 12.
  17. George A, Veeramani P. On some results in fuzzy metric spaces. Fuzzy sets and systems. 1994; 64: 395-399.
  18. Harjani J, Sadarangani K. Fixed point theorems for weakly contractive mappings in partially ordered sets. Nonlinear Anal. 2009; 71: 3403-3410.
  19. Hussain N, Berinde V, Shafqat N. Common fixed point and approximation results for generalized ϕ –contractions. Fixed Point Theory. 2009; 10: 111-124.
  20. Hussain N, Cho YJ. Weak contractions, common fixed points, and invariant approximations. J Inequal Appl. 2009: 390634.
  21. Hussain N, Jungck G. Common fixed point and invariant approximation results for noncommuting generalized (f,g)-nonexpansive maps. J Math Anal Appl. 2006; 321: 851-861.
  22. Hussain N, Khamsi MA, Latif A. Banach operator pairs and common fixed points in hyperconvex metric spaces. Nonlinear Anal. 2011; 74: 5956-5961.
  23. Hussain N, Khamsi MA. On asymptotic pointwise contractions in metric spaces. Nonlinear Anal. 2009; 71: 4423-442.
  24. Karapinar E, Fulga A. New Hybrid Contractions on b-Metric Spaces. Mathematics. 2019; 7(7): 15.
  25. Karapinar E. Revisiting the Kannan Type Contractions via Interpolation. Adv Theory Nonlinear Anal Appl. 2018; 2(2):85-87.
  26. Mutlu A, Gürdal U, Ozkan K. Fixed point results for α−ψ contractive mappings in bipolar metric spaces. Journal of Inequalities and Special Functions. 2020; 11: 64-75.
  27. Mutlu A, Gürdal U, Ozkan K. Fixed point theorems for multivalued mappings on bipolar metric spaces. Fixed Point Theory. 2020; 21: 271-280.
  28. Samet B, Vetro C, Vetro P. Fixed point theorem for α−ψ contractive type mappings. Nonlinear Anal. 2012; 75: 2154–2165.
 


Article Alerts

Subscribe to our articles alerts and stay tuned.


Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.



Help ?