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Abstract

In this article, we obtain successive differentiation of some composite mathematical functions: 
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 , using a hypergeometric approach as the successive 

differentiation of these functions can not be performed by any other mathematical technique. 
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1. Introduction and preliminaries

 The Fp q   0,p q  is the generalized hypergeometric series 
defi ned by (see, e.g., [1-6]): 
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Being a natural generalization of the Gaussian 
hypergeometric series 2 1F , where ()v denotes the Pochhammer 
symbol (for ,   ) defi ned by 
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 Here   is the familiar Gamma function (see, e.g., [5, 
Section 1.1]), and it is assumed that (0)0 : = 1, an empty product 
as 1, and that the variable z, the numerator parameters 1, …, 
p and the denominator parameters 1, ….,q take on complex 
values, provided that no zero appear in the denominator of 
(1.1), that is, that 

0( \ ; = 1, , ).j j q   

Here and elsewhere, let  ,   and   be respectively the 
sets of integers, real numbers, and complex numbers, and let

     0 0:={1,2,3 }; := 0 ; := 0 = 0, 1, 2, 3, .          

For more details of p qF  including its convergence, its 
various special and limiting cases, and its further diverse 
generalizations, one may refer to [7,8]. Certain identities 
associated with the p qF  and its generalizations, which are 
necessary for this work, are brought to mind.
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See ref. [4, p.71, Q.No.(18)] 
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See ref. [6, p.44, Eq.(8)] 
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See ref. [9, p.155, Eq.(2.1)] 
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Whenever the generalized hypergeometric function p qF , 

including 2 1F , can be expressed in terms of Gamma functions 

through summation of its specifi ed argument, which may 

include unit or 
1
2  argument, the outcome holds signifi cant 

value from both theoretical and practical perspectives.

The generalized hypergeometric series has classical 
summation theorems, including those of Gauss, Gauss second, 
Kummer, and Bailey for the 2 1F  series, as well as Watson's, 
Dixon's, Whipple's, and Saalschütz's summation theorems 
for the 3 2F  series and others. These theorems have signifi cant 
importance in both theory and application.

From 1992 to 1996, Lavoie et al. [10-12] published a 
series of works that generalized the aforementioned classical 
summation theorems for the 3 2F  series of Watson, Dixon, 
and Whipple. They also presented many special and limiting 
cases of their results, which have been further extended and 
generalized by Rakha-Rathie [13], Kim et al. [14], and more 
recently by Qureshi et al. [15]. These results have also been 
verifi ed, using computer programs such as Mathematica.

The emergence of extensively generalized special 
functions, such as (1.1), has sparked intriguing research into 
their reducibility. Bhat et al. introduce certain hypergeometric 
functions involving arcsine (x) using the Maclaurin series 
and their applications [16]. Qureshi et al. [17] also introduced 
hypergeometric forms of some composite functions containing 
arccosine (x) using the same series. Many papers from Qureshi 
et al.[18,19] introduced hypergeometric forms of some functions 
involving arcsine (x) using a differential equation approach and 
some mathematical functions via the Maclaurin series.

Inspired by the aforementioned papers, especially [9] 
comparing the resulting ordinary differential equations with 
standard ordinary differential equations of Leibnitz and Gauss, 

obtained some new hypergeometric functions. Our objective 
is to introduce successive differentiation of some composite 
functions by using a hypergeometric approach. For that 
we mention the hypergeometric forms of some composite 
functions in section 2, with their proof in section 3, using 
the series rearrangement technique. Applications of these 
hypergeometric forms in successive differentiation (mentioned 
in section 4), are given in section 5. 

2. Hypergeometric forms of some mathematical func-
tions

When |z|<1, the following hypergeometric forms of 
mathematical functions hold true: 
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3. Derivation of hypergeometri c forms

In this section, using the series rearrangement technique, 
we derive the hypergeometric forms of some mathematical 
functions mentioned in section 2.

Proof of hypergeometric form (2.1) 
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Using the equations (1.4) and (1.5), we have 
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Replacing n by (n+2) in equation (3.1), we get 
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After further simplifi cation, we get the result (2.1).

Proof of hypergeometric form (2.2) 
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Using the equation (1.4), we have 
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Replacing r by (r+1) in equation (3.2), we get 
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After further simplifi cation, we get the result (2.2).

Similarly, we can get the remaining hypergeometric forms 
(2.3) and (2.4) in the same way as the hypergeometric forms 
(2.1) and (2.2). 

4. Successive differential coeffi  cients of some mathe-
matical functions

When |z|<1, successive differential coeffi cients of some 
mathematical functions hold true: 
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5. Applications of hypergeometric forms in successive 
differenti ation

In this section, using the series rearrangement technique, 
we give the proof of successive differential coeffi cients of 
mathematical functions mentioned in Section 4.

Proof of successive differential coeffi cient (4.1) 
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Replacing r by (r+n) in equation (5.1), we get 
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After further simplifi cation, we get the result (4.1).

Similarly, we can get the remaining successive differential 
coeffi cients (4.2)-(4.5) in the same way as the successive 
differential coeffi cient (4.1). 

Conclusion

In this paper, we have obtained the hypergeometric forms 
of some composite functions. Further, we have found some 
applications of these hypergeometric forms in successive 
differentiation. We conclude our present investigation with 
the remark that the successive differentiation of some other 
functions can be derived in an analogous manner. Moreover, the 
results deduced above are quite signifi cant and are expected to 
lead to some potential applications in several diverse fi elds of 
mathematical, physical, statistical, and engineering sciences.
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