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Abstract

In this research paper, we introduce a novel mathematical operator known as the alpha-difference operator (α-DO) and its corresponding integral. We establish 
the foundational theorems related to this operator and demonstrate its applications in both linear and nonlinear dynamical equations. A key focus of our study is the 
application of α-DO in the context of the prey-predator model with harvesting. In the linear scenario, we derive exact solutions for the model. For the nonlinear case, 
we develop an iterative scheme to obtain approximate solutions. We also prove a theorem that guarantees the convergence of this scheme. We conduct a thorough 
investigation of the dynamical behavior of the system as the parameter varies. This is visualized through graphical representations. Our fi ndings reveal that the system 
exhibits local memory, which signifi cantly infl uences the evolution of the system. We observe that the α-DO is particularly effective in describing dynamical systems 
that undergo a change in behavior at a specifi c characteristic time. This is especially relevant to the system under consideration. A prime example of such a system is 
the Exposed-Infected-Recovery System (EIRS). Lastly, we construct the Hamiltonian function using a quadratic invariant. This provides further insights into the energy 
conservation and stability properties of the system. Our research opens up new insight for the application of the α-DO in various fi elds of science and engineering.
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1. Introduction

Different prototypes of calculus, besides the classical 
ones, are well established. Among them, are q-calculus, 
fractional, proportional derivative, and variational calculus. 
By proportional derivatives, we mean; conformable, Beta, 
fractal derivatives, and M-truncated derivatives [1-3]. We 
mention, also, q -, fractional [4] and q - variational calculus 
[5]. These calculuss were employed in many trends of research 
in applied mathematics and in the applied sciences. They were 
the objective of numerous researchers as far as they are the 
topics of a variety of scientifi c journals. Many non-classical 
calculuss are well established in the literature. Basic and 
advanced analysis and also applications were approached. 
The q - difference (q-D) operator was introduced in [6]. In 
this issue, the existence of a fundamental set of n-linearly 
independent solutions to linear q-difference equation of order 
n  was proved in [7]. Meromorphic solutions of q -difference 

equations (q-DE) were studied in [8,9], due to the apparent 
role of the existence of such solutions of fi nite order for the 
integrability of discrete difference equations. The q-DE has 
applications in quantum calculus (5) and in thermodynamics 
for entropy [10]. Also q -dynamic equation was introduced 
in [11-14] with applications in biology. In [9], the well-
known logistic equation was studied in the quantum calculus 
analogue. Different forms of Fractional Derivatives (FD) have 
been proposed in the literature. Riemann-Liouville (RL), 
Caputo [15], and Caputo-Fabrizio [15-17].

A defi nition of the general fractional time derivative (FTD) 
will be defi ned later on, where the kernel may be chosen 
singular or regular. Indeed, when studying the dynamic 
evolution of a system with FTD, means that we are concerned 
with determining the effect of the distributed delay (or recent 
memory) on the system behavior. This may be argued to that 
a delay “t-t1” that exists in the kernel. Fractional systems are 
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used to model phenomena that exhibit anomalous or complex 
behaviors. This holds in systems with long memory or with 
hereditary effects. Fractional nonlinear PDEs were used in many 
areas of science, physics, biology, chemistry, and engineering 
sciences (Electronics and telecommunications) [18-21]. In 
physics, analysis, and modeling of diffusion phenomenon were 
currently considered. In biology and biophysics, the electrical 
conductance of biological systems, fractional modeling of 
neurons, muscle modeling, and lung modeling were studied. 
Fractional nonlinear dynamical systems NLDS have been 
studied by many researchers [22-35]. Very recently, a relevant 
work unifi ed, approximately, the different forms, by reducing 
them to proportional derivatives [36]. The dynamics of prey-
predator harvesting are currently studied in the literature. A 
prey–predator-type fi shery model with Beddington–DeAngelis 
functional response and selective harvesting of predator species 
was considered in [37]. A prey-predator model incorporating 
prey-refuge and independent harvesting in either species 
was proposed with controlling harvesting to break the cyclic 
behavior of the system [38].

Bioeconomic harvesting of a prey-predator fi shery in which 
both the species are infected by some toxicants was considered 
[39]. In [40], a fractional-order prey-predator model was 
introduced and the dynamical behavior of the system was 
investigated via local stability. The study of one prey and 
one predator harvesting model with imprecise biological 
parameters was presented [41]. Further relevant works were 
carried out [42-47].

Here, a new FDO is introduced that reveals the memory 
compression effect, which is relevant in dynamical systems and 
in computer sciences. Thus, we are led to clarify the different 
memory descriptions. To this issue, they can classifi ed as (i) 
memory transport (time delay), (ii) memory compression, and 
(iii) recent or ancient- memory. Cases (ii) and (iii) are relevant 
in systems with time-fractional derivatives.

This paper is organized as follows.

In Sec. 2 basic defi nitions and memory index are presented. 
Sec. 3 is concerned with introducing the NDO. The ND integral 
operator is proposed in Sec. 4. Applications are considered in 
Sec. 5 and the quadratic invariant is presented in Sec. 6.. Sec. 7 
is devoted to conclusions.

2. Basic defi nitions and memory index

2.1 Basic defi nitions

Defi nition 1: The q-difference is defi ned by [6]

( ) ( ) ,
( 1) >1,

( ) ( )( ) = , <1,
(1 )

=1.
( ),

f qt f t
t q q
f t f qtD f t qq t q

q
'f t















                 (1)

Defi nition 2 (new): The defi nition of the FTD in the Caputo- 
version, with a general (kernel regular or singular), is,

( ) = ( ) ( , ) ( ) ,0 < <1,0 1 1 10
S t 'D f t A K t t f t dtt

               (2)

Where ,1, ,1, 1( ),  ( ) ={ , ( ),f C C u u C        

| ( , ) ( ) |< }. ( )0 1 1 1
t 'K t t u t dt K A  . can not be defi ned in 

general. It may be considered as a normalization factor to fi t 
with a particular Def. of a fractional derivative.

To distinguish between these different memories that arise 
in dynamical systems, we defi ne the memory index function 
relative to a dynamical quantity u(f(t)), t is the time variable.

A memory index function is defi ned as follows [11].

( ( ( ))) = ( ( ( )) = ( )M u f t Arg u f t t f t tind                (3)

We mention that when f(t)=t then Mind(u(f(t))) = 0 and when 

f(t)=t+1 then Mind(u(f(t))) = 1.

Defi nition 3: A system is said to be with memory if 
Mind(u(f(t))) < 0.

Examples

(i) When ( ) = ,  ( ( ( ))) = < 0f t t M u f tind    and then the 
system is with local memory.

(ii) When ( ) = ( ) ( ) ,0
t rf t t h d    the system is with 

distributed memory (recent memory),

(iii) When ( ) = ( ) ( ) ,t rf t t h d   the system is with 
ancient memory.

Now, we consider (5) and assume that 1( )f C  , it is 

interesting to determine memory effects associated with the 

operator ( )D f tG
 . Indeed by using the mean value theorem, we 

have 

( ) ( )( ) = = ( ), < < .u t u t 'D u t u t tt t t

  



               (4)

From (4), we fi nd that, ( ( )) = ( ( )) = .'Arg D u t Arg ut
   Thus, 

= .M tind    Thus < < 0,0 < <1t t Mind
  , which stands for 

non-deterministic memory compression.

3. The new α-difference operator

In an analog to the q-difference operator (1), we present 
the defi nition of ND,

New defi nition 4 

( ) ( ) , 0 < <1,0 < <1 >1, >1

( ) ( ) , 0 < <1, >1 >1,0 < <1( ) =
1( ), =1, ( )

(1), =1

f t f t t or t
t t
f t f t t or tDOD f t t t

'f t f C
'f t


 


 






















 
       
       
                 (5)
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We mention that (5) is an analog to (1). On the other hand, the 
nomenclature fractional may be referred to, as 0<α<1.

Theorem 1

(a) ( ( ) ( )) = ( ) ( )DO DO DOD f t g t D f t D g t    .

(b) ( ( ) ( )) = ( ) ( ) ( ) (DO DO DOD f t g t g t D f t f t D g t
   )

or ( ( ) ( )) = ( ) ( ) ( ) ( )DOD DO DOf t g t f t D g t g t D f t


 

(c) 
( ) ( ) ( ) ( )( )( )

( ) ( ) ( )
g t D f t f t D g tf t N NDN g t g t g t

 







(d) 2( ( ) ) = ( )( ( ) ( )).DO DOD f t D f t f t f t
  

(e) 1( ( ) ) = ( ) ( ) ( )=0
j n jnn DOD f t D f t f t f tN j

 


 .

Proof

(a) 

( ( ) ( )) ( ( ) ( ))=

( ) ( ) ( ) ( )= =

f t g t f t g tLHS
t t

f t f t g t g t RHS
t t t t

 


 
 

  


 
 

.

(b) 

( ) ( ) ( ) ( ) ( )( ( ) ( )) ( )( ( ) ( ) ( )= =

( ( ) ( )) ( ) ( )= ( ) ( ) = .

f t g t f t g t f t g t g t f t g t f t g tLHS
t t t t

g t g t f t f tf t g t RHS
t t t t

    
 

 
 

   
 

 
 

(c) 

1 ( ) ( ) 1= ( ) = ( ( ) ( ) ( ) ( )) =
( )( ) ( ) ( )( )

1 (( ( ) ( )) ( ( ) ( ))[ ( ) ( ) ] =
( ) ( ) ( ) )( )

f t f tLHS f t g t f t g t
g tt t g t g t g t t t

f t f t g t g tg t f t RHS
g t g t t t t t

  
   

 
  

 
 

  
 

(d). Put g(t) = f(t) in (b)

(e) By using (d) and by induction.

The proof is completed
.

Now we identify the function that is invariant under the 
ND.

Theorem 2

The following function is invariant under the ND.

1( ) = , > 0,0 < <1,, 1.( 1)=11 | |

DOE t t tnnn t t
  


 

 
               (6)

Proof

The function which is invariant under the ND satisfi es,

( ) = ( ).DOD f t f t                 (7)

First, let 0<t<1,0<<1Using (19) gives,

( ) = ( )(1 ( )),0 < <1,0 < <1.f t f t t t t                  (8)

By iterating (8) and letting t t  in each subsequent step, 

we have,

( ) = ( )(1 ( )),
2 2( ) = ( )(1 ( )),

( 1) ( 1)
( ) = ( )(1 ( )).

f t f t t t

f t f t t t

n nn nf t f t t t

 

   

   

 

 

 
 

                (9)

By applying the product of both sides and as n→∞, as 0<<1

,  then, n→0 and we get,

1( ) = (1) , 0 < <1,0 < <1.( 1)=11 ( )

DOE t f tnnn t t
  


 

 

 
                   
                (10)

Second, let t>1,0<<1 and by the same way, we fi nd,

1( ) = (1) , >1,0 < <1.1=11 ( )
DOE t f tn nn t t

  

 

 
              (11)

Here, we take f(1)=1. From (10) and (11), we get (6).

This completes the proof . .

Now, consider the equation,

( ) = ( ), = .DOD f t f t ib                (12)

The solution of (12) is,

1( , ) = =( 1)=11 ( |) |

2 )2 11 | | .(2 1) 2 )2 2 1=1 =12 2 2 2(1 | | ) (1 | | )

DOE t ib nn nn ib t t

mmmb t tim mm mm mm mb t t b t t

  

 

   


  

  

    
   

 
       
       
       
       
               (13)

Eq. (13) suggests to write,

1( , ) = ,(2 1)2=1 2 2(1 | | )

2 )2 1| |( , ) = , > 0,0 < <1.2 )2 1=0 2 2(1 | | )

DOcos t b mmm mb t t

mmmb t tDOsin t b tmmm mb t t

  

 
  


 

 

 
 

 

 
       
       
       
       
                (14)

In the same way, we defi ne,

1 1( , ) = ( ( , ) ( , )) = ,(2 1)2 2=1 2 2(1 | | )

2 )2 11 | |( , ) = ( ( , ) ( , )) = , > 0,0 < <1.2 )2 2 1=0 2 2(1 | | )

DO DO DOcosh t b E t b E t b mmm mb t t

mmmb t tDO DO DOsinh t b E t b E t b tmmm mb t t

    

 
    


   

 

    
 

 

                (15)
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We remark that 

(0, ) =1, (0, ) =1, (0, ) =1, (0, ) = 0Do DO DO DOE b cos b cosh b sin b     

and (0, ) = 0DOsinh b .

3.1 Higher order fractiona l difference

We have, 

( ) ( )( ) = ( ( )) = ( )2

2( ) ( ) ( ) ( )= = ( ( )) ( ( )),2

( ) = ( ( ( ( )))) = ( ( )) 2 ( ),3 2

( )= ( (.... ( ( )))

f t f tDO DO DO DOD f t D D f t D
t t

f t f t f t f t D f t D f tN Nt tt t
DO DO DO DO DO DOD f t D D D f t D f t D f t

n
DO DO DO DOD f t D D D f tn


   

     
 


    

   




  




 



)= ( ( )) ( ( ).( 1) ( 1)
DO DOD f t D f tn n


  

 

 
       
       
       
       
       
       
               (16)

When 1( )f C  , the ND mean value theorem states,

( ) ( )( ) = ( ), < < , 0 < <1,0 < <1 >1, >1,

( ) ( )( ) = ( ), < < , >1,0 < <1 0 < <1, >1.

f a f a 'i f a a t ort
a a

f a f a 'ii f a a t or t
a a

    

    







  

                                  
                (17)

Example. Consider the function f(t)=tn.

1 1 1( ) = = = ( ),
=0

1 ( 1)( ) = , > 0, > 0 >1, 0.
=0

n n nt t j n jDO n nD t t t t e tnt t j

n je t t t or tn j

  
 

  

   


  

           (18)

In (17), we put f(t)=tn, in this case, we fi nd that,

11 ( ) 1= ( ) , >1.
na e an n n
n





               (19)

4.α-DO integral operator and applications

We proceed to defi ne the ND-integral by considering the 
ND equation.

We consider a basic equation,

( ( )) = ( )., > 0,0 < <1.DOD g t K t t               (20)

For the solution of (20), we have the following theorem.

Theorem 3

The solution of (20) is,

1 1( ) = (1) | | ( ), > 0,0 < <1.
=1

k k kg t g t t K t t
k

   
  

 
 

(21)

Proof

First, let 0<t<1,0<<1 and rewrite (20) in the form,

( ) ( ) = ( )( ).g t g t K t t t               (22)

It is worth mentioning that (22) is a functional equation. By 
using the same steps, as was done in (6), we have,

( ) ( ) = ( )( ),
2 2( ) ( ) = ( )( ),

1 1 1( ) ( ) = ( )( ).

g t g t K t t t

g t g t K t t t

k k k k kg t g t K t t t

 

    

    

 

 

  
 

          (23)

Summing both sides of (23) and letting k →∞, we get, 

1 1( ) = (1) ( ) ( ),0 < <1,0 < <1.
=1

k k kg t g t t K t t
k

   
  

   
       
                (24)

The second case is dealt with in the same way and we get,

1 1( ) = (1) ( ) ( ), >1,0 < <1,
=1

k k kg t g t t K t t
k

   
  

 
 

       
                 (25)

By using (24) and (25), we get (21) and the proof is 
completed .

4.1 α-DO  integral

Indeed, the solution of (20) can be written symbolically,

1(1) ( ) , 0 < 1,1 1( ) = ( ( ) =
(1) ( ) , 1.1 1 1

g K t d t ttDOg t I K t
tg K t d t t












 

 

           (26)

By using (21) and (25), the α-DO integral defi nite integrals 
are defi ned by,

Defi nition 5

1 11 ( ) = ( ) ( ), 0 < <1,0 < <1,1 1 =1

1 1( ) = ( ) ( ), >1,0 < <1.1 1 1 =1

k k kK t d t t t K t tt k

k k ktK t d t t t K t t
k

   

   

  


  


 
       
       
                (27)

We can rewrite (27) by,

1 1( ) = | | ( ), > 0,0 < <1.0 1 1 =1
k k ktK t d t t t K t t

k
   

  


    (28)

Further, we have,

( ) = ( ) ( ) , > >1,1 1

1 1( ) = ( ) ( ) , < <1.

b b af t dt f t dt f t dt b aa

b f t dt f t dt f t dt a ba b a

  

  

  

                 (29)
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Further identities for defi nite integrals hold.

1 1 11 ( )( (( ( )) = ( ) ( ) ( ( )
=1

1 1= ( )( ( ) ( )),
=1

1( )( (( ( )) = ( ) ( ) ( ( )1 =1

1= ( )( ( ) ( )).
=1

k k k kDOf s D g s d s t t f t D g tt Nk

k k kf t g t g t
k

k k k kt DOf s D g s d s t t f t D g tGk

k k kf t g t g t
k

    
 

  

    
 

  

   


  


 


 


 

                                (30)

1( ) ( )1 1( ( ( )) = = ( ( ) ( )),
=1

1( ) ( )( ( ( )) = = ( ( ) ( )).1 1 =1

k kf s f sDOD f s d s d s f t f tt t s s k

k kf s f st tDOD f s d s d s f t f t
s s k

  
  

  
  

    

    

 
       

                (31)

5. Applications

As the function which is invariant under the FDO is obtained 
in (6), it establishes a calculus. So, it can be used to handle 
linear fractional difference equations.

5. 1 The  -DO linear dynamical system.

We consider the system,

( ( ) = ( ) ( ),  ( ) = ( ) ( ).DOD x t ax t by t D y t cx t dy tN


            (32)

To solve (32), let ( ) = ( , )1
DOx t c E t   and ( ) = ( , )2

DOy t c E t  . 

Direct calculation gives,

= 0,
a b

Det
c d



 
  
 




and the eigenvalues are,

1 2= ( ( ) 4 ).1,2 2
a d a d bc                 (33)

We focus our attention on the case when (a-d)2+4bc<0. 

Thus we have,

( )( ) = ( , )( (0) ( , ) (0) ( , )),
2

( )( ) = ( , )( (0) ( , ) (0) ( , )),
2

1 2 2= ( ) , < ( ) .
2

a dDO Do DOx t E t x cos t r y sin t rN

a dDO DO DOy t E t y cos t r x sin t r

r a d bc bc a d

 

  

 

 

    

 

             (34)

The solutions in (34) are displayed against t for different 
values of α in Figures 1 (i) and (ii). 

We remark that the maximum value holds at t = 1 and the 
solutions increase when 0<t<1, while they decrease when t > 1.

It is worth mentioning that when studying real phenomena, 
and by considering t normalized by characteristic time τc, the 
physical quantity attains its maximum or minimum at τc. This 
illustrates the importance of the use of this new difference 
operator in dynamical systems.

5.2 The    - DO logistic equation

Consider the ND logistic equation which is characterized 
by the normalized growth and death rates, and by the carrier 
capacity,

( ) = ( )(1 ( )), (0) = 0
DOD u t u t u t u u               (35)

Indeed, (35) is a nonlinear equation.

The solution of (35) is,

1(1) ( ) , 0 < 1,1 1
( ) = ( ( ) = (1) ( ) , 1,1 1 1

( ) = ( )(1 ( )).

u K t d t tt
tDOu t I K t u K t d t t

K t u t u t



 










 

 



             (36)

By using (28), leads to,

1 1 1( ) = | | ( )(1 ( )), > 0,0 < <1.
=1

k k k ku t t t u t u t t
k

    
   

 
 

                (37)

Here, to fi nd the solution to (35) a discretization and an 
iterative scheme in (34) are used. So, we have,

1 1 1( ) ( 1) ( 1)( ) = | | ( )(1 ( )), > 0,0 < <1,
=1

k k k kn n nu t t t u t u t t
k

    
     

 
       
                (38)

Figure 1: (i) and (ii). The solutions x(t) and y(t) are displayed against t for different 
values of α, when a = 0.5, d = 0.5, b = -3, c = 4, x(0)=20, y(0)=30.
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Where,

1(0)( ) = (0) ,1=11 | |
u t u n nnn t t 


 

 
            (39)

Thus, the fi rst approximate solution of (35) is,

1 1 1(1) (0) (0)( ) = | | ( )(1 ( )), > 0,0 < <1,
=1

k k k ku t t t u t u t t
k

    
   

 

 
       
                 (40)

Finally, we have,

1 1(1)( ) = | | (0) 1 2=1=1 1 | |
1(1 (0) ), > 0,0 < <1.1 2=11 | |

k ku t t t u k n k nnnk t t

u tk n k nnn t t

  
 


 

 
     

 


     
 

 

       
       
                (41)

The results for the fi rst approximation in (41) are displayed 
in Figures 2 (i) and (ii). 

Figures 2 (i) and (ii) show that the solution of the logistic 
equation attains a steady state value asymptotically. We remark 
that the behavior of the solution, at t=1, changes signifi cantly, 
which reveals that, there is a critical where the behavior 
changes remarkably.

5.3 The prey-pr edator mode

1. To construct a model for a hypothetical dynamical 
system, the ordinary derivative is used.

2. For modeling a dynamical system of living creatures, 
careful attention has to be taken into account, as a 
living being has a history. For example in a prey-
predator model with harvesting, For a prey in order 
to be predated or harvested, it must exist not at time t 
but at time (t-t0) and this corresponds to time delay (or 
local memory). Further memory aspect that describes 
recent history (memory) or ancient history (memory) 
are represented by the integrals.

( )(.) , ( )(.) .0 1 1 1 1
t tK t t dt K t t d  

Thus, in this case, to model a dynamical system, the ordinary 
derivative is not realistic and it is replaced by introducing a 
fractional derivative. The most realistic ones are the Riemann-
Liouville and Caputo derivatives [15]. It is worth mentioning 
that, here, the fractional difference in (19) is with fractional 
local memory (tα-t), 0<α<1 (see the examples in section 2.2).

We consider the prey-predator model with proportional 
harvesting in the prey and predator.

Let u(t) and v(t) be, respectively, the prey and predator 
densities at time t.

• Assume that the prey population grows logistically with 
an intrinsic growth rate λ in the absence of a predator.

• Let γ be the food-independent death rate.

( ) = ( )(1 ( )) ( ) ( ) ( ),1

( ) = ( ) ( ) ( ), (0) = , (0) = ,2 0 0

DOD u t u t u t u t v t u t

DOD v t u t v t v t u u v v

  

  

  

              (42)

Where μI,i =1,2 are the proportional harvesting coeffi cients, 

while β is the perdition rate of the prey.

Eq.(42) is written in the matrix form,

0( ) ( ) ( ) ( ) 1= , = .
0( ) ( ) ( )( ) 2

DOD u t u t u t v t
M M

DO v t u t v tD v t

 
 



                          




 
 

       

              (43)

We use the transformation,

( , ) 0( ) ( )1= ,
( ) ( )0 ( , )2

DOE tu t U t
v t DO V tE t

 



 
    
       
    

 




          (44)

into (43) and we get, 
Figure 2: (i) and (ii). In (i) the 3D plot for the solution u(1)(t), given in (41), is displayed 
against t and α. In (ii), it is displayed against t for different values of α. When 
u(0)=20, λ = 2.5.
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( , ) ( , ) ( ) ( )( ) 1 21= =
( ) ( , ) ( , ) ( ) ( )1 2

( , ) ( , )1 2 ( ) ( )
( , ) ( , )1 2

( , ) ( , )1 2
(

DO DODO E t E t U t V tD U t
M

DO DO DOD V t E t E t U t V t

DO DOE t E t
U t V tDO DOE t E t

DO DOE t E t
DOE

    

      

    
    

    


     
        

  


   

 


 

 
 



,

( ) ( )
, ) ( , )2 1

( , ) 01= .
0 ( , )2

U t V tDOt E t

DOE t
M

DOE t

   

  
 

 
 
 
 
 
 
 
  
 

 
 
 
 
 

 






 
       
       
       
       
       
       
              (45)

By using (26), (45) is integrated to,

( , ) ( , )1 1 1 2 ( ) ( )1 1( , ) ( , )( ) 0 1 1 1 2= .0 1( ) ( , ) ( , )0 1 1 2 ( ) ( )1 1( , ) ( , )1 1 1 2

DO DOE t E t
U t V tDO DOu E t E tU t t d t

vV t DO DOE t E t
U t V tDO DOE t E t

    
    


         

 
 
 

                   
  
 

 


 
 

 
 

 

 
                 (46)

A discretization for (46) is,

( , ) ( , ) ( 1) ( 1)1 1 1 2 ( ) ( )1 1( ) ( , ) ( , )( ) 0 1 1 1 2= 0( ) ( , ) ( , )( ) 0 ( 1) ( 1)1 1 1 2 ( ) ( )1 1( , ) ( , )1 1 1 2

DO DOE t E t n nU t V tDO DOn u E t E tU t t
v DO DOn E t E tV t n nU t V tDO DOE t E t

    
    

        



                 



   
 

 
    
 

,1d t











 
                (47)

Where (0)( ) = 0U t u and (0)( ) = 0V t v .

The fi rst approximation in (47) is,

( , ) ( , )1 1 1 2
0 0(1) ( , ) ( , )( ) 0 1 1 1 2= ,0 1(1) ( , ) ( , )( ) 0 1 1 1 2

0 0( , ) ( , )1 1 1 2

DO DOE t E t
u vDO DOu E t E tU t t d t

v DO DOE t E tV t
u vDO DOE t E t

    
    


         

 
 
                      
  
 

 


 
 

 
 

 
 

                 (48)
together with using (44).

To prove the convergence of the iterated scheme (47), fi rst, 

we use (6) and fi nd that 
1( ) , > 0=11

DO tE t e tnn t 
 


. Thus, 

it is suffi cient to prove the convergence in the classical case.

0( ) ( ) ( ) ( ) 1( ) = = , = .
0( ) ( ) ( ) ( ) 2

u t u t u t v t
blackU t M M

v t v t u t v t

 
 

                           




 




 
               (49)

The iteration scheme of (49) is,

( 1) ( 1)( ) ( )0 1 1( ) 1( ) = , 1.0 1( 1) ( 1)( ) ( )0 1 1

n nu u t v tMttnU t e dt n
v n nu t v t



 

              

 
    

 
             (50)

Now, we prove the convergence theorem. To this issue, we 
present the following.

We write ( ) ( )={ , =1,2,3},n nU U ii where 

( ) ( ) ( ) ( )= ,  = | ( ) |=1,2,3
n n n nU Max U U Sup U ti ii t      

We assume that the space of solutions 

( ) ( ) 1={ : ( ),, =1,2,3, }n nS U U C i ni i
   is endowed by the norm

( ) ( ) ( )= , = | ( ) |n n nS Max U U Sup U ti i i it       ) (cf. (47)).

Defi ne the mapping ( 1) ( ): ; ( ( )) = ( ).n nM S S M u t u ti i
  We 

proceed with the proof of the convergence theorem by the 
following.

The logarithmic norm of a matrix M, which is defi ned by,

1( ) = ,0
I MM Limit   
 


              (51)

Where, M  is the matrix norm. Here, we consider 

== ( | |)1 =1
j nM Max mi n ijj

   

Lemma: The norm of exponential matrix 

= ( ),  , =1,...,M m i j mm m ij  satisfi es [45,46],

( ) < ( ( )),exp tM exp t M                 (52)

Where =( ) = (| | | |)=1,
j mM Max m mi ii ijj j i   .

Theorem: The sequence of solutions u(n) converges 

absolutely to the exact solution black U as n →∞. as 

Proof. By using (49), (50), and the lemma, we have,

(0) (0)
(1) (0) 1< <0 1(0) (0)

(0) (0) (0) (0)
( )1 < =0 01 1(0) (0) (0) (0)

(0) (0)(| | | |)1 2 10 (0) (0)

Mt u vtU U e dt
u v

Mt u v u vt t Me dt e dt
u v u v

t u vte
u v



 

 

   

   

 

 
 
  
 

   
   
      
   

 




 
 



  
 

 

   




   

     

 .1dt






 
       
       
       
       

                (53)

From (53), there exist ε0 < 1 and T0 such that,
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(1) (0)
0 0< < 1,  > .U U t T            (54)

Defi ne a mapping M  with ( ) ( 1)( ) =i iM U U 

In the same way for (2) (1) (1 (0)= ( ) ( )U U M U M U       it 

holds that there exists ε1 < 1 and T1 such that,

(1) (0)( ) ( ) < <1,  > ,1 1M U M U t T                (55)

and by induction, it holds that,

( ) 1)( ) ( ) < <1,  > .n nM U M U t Tn n             (56)

From (54)-(56), there exist =Min j j and =T Max Tj j
such that,

( ) 1)( ) ( ) < <1,  > .n nM U M U t T               (57)

Thus, M  is a contraction mapping. This completes the 
proof .

Corollary. The sequence of solutions u(n) converges 
absolutely on [0,T] to the exact solution u of (3).

By using (6), the results in (48) are displayed in Figures. 
3(i) and (ii). 

When β=0.05, u0 = 5000, v0 = 100, μ1 = 0.01, μ2 = 0.005,γ = 
0.001, λ = 0.5.

After Figures 3 (i) and (ii), we fi nd that the solutions u(t) 
and v(t) decay with α when 0<t<1 and they are oscillatory with 
α when t>1 A global behavior of the density of the two species 
is to decay with time.

6. Quadratic invariant

Here, we are concerned with constructing a quadratic 
invariant (QI) for (56), which is a quadratic polynomial in u′(t) 
and v′(t) and it leads to the Hamiltonian function. Indeed, a QI 
for the dynamical system,

( )= (1 ( )) ( ) ( ) ( ) ( ),1
( )= ( ) ( ) ( ),2

u t u t u t u t u t v t

v t u t v t v t

  

  

   

   
             (58)

undergoes the form,

2 2 ( , ) ( , ) ( , ) = 0.5 4 3 2 1 0A u A u v A v A u v u A u v v A u v         
 

               (59)

Eq. (75) is rewritten,

= (1 2 ) ,1
= .2

u u u u vu uv

v vu uv v

   

  

       

    
   (60)

By differentiating (76), using (77), and by setting the 

coeffi cients of u′j v′i,i,j = 0,1,2 equal to zero, we get,

( , )= 2 2 4 2 ,5 5 5 52 1 4
( , )= ( ) 2 251 4 4 1 4 2 4 4

( , ) 2 ,2 3 4
( , )= ( , ) ( , ) ( , )0 1 2 2

2 ( , ) ( , ),2 1 2
( , )=2 2 ,1 3 2 3 4

( , )=0

A u v A A A u A v A vu
A u v A A A A u A u A uu

A u v A v A vv
A u v vA u v A u v v A u vu

uA u v A u v

A u v A A u A uv
A u v uAv

    

     

 

  

 

  



    

     

  

   



 

 ( , ( , ) ( , ).1 2 2 1u v uA u v A u v  

 

                (61)

Calculations give rise to,

   


 
   

( , ) = ( ) 2 ,52 1 4 1 0
12( , ) = 2 2 2 251 2 3 2 3 4 12

2 2 2 ) ,2 1
12 2( , )= 2 ( ) 20 0 2 2 3 2 0 12

2 3 22 2 25 1 2 1
2 2 2 22 1 1

A u v v t B A u A u u v B

A u v B A u A v A uv A u

u u v B u

A u v C B v A v u t B u v

A u u v v

u v

    

    

   

     

       

    

      

     

    

       

      

     
  

( 2 )2

2 2 ( ) 2 2 .5 2 3 2 2

v

v A u A v t u B

 

   






   

 
       
       
                (62)

From (79) into (76) leads to,

Figure 3: (i) and (ii). The prey and predator distributions, u(1)(t) and v(1)(t) respectively, 
given by (48) and (44), are displayed against t for different values of α.
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Eq. (80) can be written as a Hamiltonian function,

( , , , ) = .0H u v u v C                 (64)

Conclusion

In this study, the alpha-difference operator (a-DO) 
and difference integrals are introduced. We establish the 
fundamental analysis and discover that the a-DO is reversible. 
We further explore the “invariant” a-DO-exponential 
function, along with trigonometric and hyperbolic functions. 
As a result, the a-difference forms a closed calculus, analogous 
to the q-calculus. We apply the a-DO to the logistic and prey-
predator models with harvesting, focusing on the effects of 
varying the parameters. In the fi rst case, we observe a critical 
time (t=1) at which the population distribution changes its 
behavior, transitioning from a growing state to a decaying one. 
The same results hold for the prey-predator model. Another 
typical example is the exposed-infected-recovery system. 
We fi nd exact solutions for the linear fractional difference 
dynamic system. In the nonlinear case, we obtain approximate 
solutions by implementing an iterative scheme, for which we 
prove a convergence theorem. Furthermore, we construct the 
Hamiltonian function for the prey-predator system using a 
quadratic invariant. This provides further insights into the 
energy conservation and stability properties of the system. Our 
research opens up new avenues for the application of the a-DO 
in various fi elds of science and engineering.
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