Literature Review

Cooperative investment problem with an authoritative risk determined by Central Bank

Anwar Almualim*
Mathematics Department, College of Sciences, King Saud University, P.O. Box 2455, Z.C. 11451, Riyadh, Kingdom of Saudi Arabia

Received: 16 August, 2022
Accepted: 29 August, 2022
Published: 30 August, 2022
*Corresponding author: Anwar Almualim, Mathematics Department, College of Sciences, King Saud University, P.O. Box 2455, Z.C. 11451, Riyadh, Kingdom of Saudi Arabia,
E-mail: aalmualem@ksu.edu.sa
Keywords: Cooperative investment; Coherent risk measure; Pareto optimal; Equilibrium allocation

Copyright License: © 2022 Almualim A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
https://www.peertechzpublications.com

Check for updates

Abstract

In this paper, we are interested to provide an analytic solution for cooperative investment risk with an authoritative risk determined by the central Bank. This problem plays an important role in solving cooperative investment problems in an investment sector such as insurance companies or banks etc and keeping in our mind the effect of a risk determined by the central Bank which has not been done before. We reformulate cooperative investment risk by writing dual representation for each risk preference (Coherent risk measure) for each agent (investor). Finding an analytic solution for this problem for both cases individual and cooperative investment problem by using dual representation for each risk preference has a strong effect on the financial market. Moreover, we find the equilibrium allocation in terms of an equilibrium price by formulating the optimization problem in the case of equilibrium with an initial endowment for each agent's 'investor'. In addition, formulate a problem that covers the risk minimization problem with an expected return constraint and expected return maximization problem with risk constraint, in both individual and cooperative investment cases, for the general case of an arbitrary joint distribution for the asset return under certain conditions and assuming that all coherent risk measure is continuous from below. Thus, the optimal portfolio is written as the optimal Lagrange multiplier associated with an equality-constrained dual problem. Furthermore, a unique equilibrium allocation as a fair optimal allocation solution in terms of equilibrium price density function for each agent (investor) is also shown.

AMS Subject Classification: [2022].

Introduction

Cooperative investment consider a recent problem and it is not very old, all the work before (2013). It was working on risk-sharing without portfolio optimization problems. Later, they focused on optimal risk-sharing which has become one of the central avenues of study for researchers, which is defined as similar to cooperative investment but is not concerned with portfolio optimization.

Cooperative investment synthesizes three key elements; (1) Modeling of agents' risk preferences. The fact that different agents have different utilities or different risk preferences for goods is the basis of all markets. In my paper we choose the coherent risk measure, not that there are many types
of coherent risk measure, we focus on negative expected as definitions of coherent risk measure and we write dual representation for each risk preferences for each agent (investor). Then, formulate an individual optimization problem (2) Formulating and solving a cooperative investment problem. In this paper we develop T. Akturk, C. Ararat [1] studied portfolio investment with two risks and we develop this paper and solve cooperative investment by considering an authority risk measure determined by the central bank. Hence, we solve a cooperative investment problem with three risk measure: the first risk measure represent the first agent, the second risk measure represents the second agent, and an authority measure reflected the third risk measure. It can be formulated as follows: for a given uncertain outcome X where we have m agents, the question is how X can be partitioned
into random $Y_{i}, i=1, \ldots, m$, which is based on their risk-reward preferences, such that $\sum_{i=1}^{m} Y_{i}=X$ whether each Y_{i} is acceptable for each agent i or not. At first glance, cooperative seems to offer no advantage over individual investment. However, the exact reason why cooperative investment has the advantage is that agents' shares may not be replicable in an incomplete financial market. In other words, sharing creates instruments that on one hand, satisfy individual risk preferences but, on the other hand, may not be replicable in the incomplete market, so each agent is strictly better at participating in cooperative investment than investing alone. Note that, the underlying asset returns X are in some L^{p} space $L^{p} \in[1,+\infty]$ and they have an arbitrary joint distribution with possible correlation. Assuming that all risk measures are continuous from below so that the suprema in the dual representations are attained at the same dual probability measure, we derive a simple dual problem with a linear objective and a linear equality constraint in addition to domain constraints for the dual variables. Thus, at first, we write dual representation for each risk preference (Coherent risk measure) for each agent (investor). As shown in examples; example 1, then create an individual optimization problem and cooperative investment problem then find the optimal solution as shown in theorem (1), and theorem (2), respectively. In the last step, we find the equilibrium allocation in terms of equilibrium price by formulating the optimal problem in the case of equilibrium with an initial endowment for each agents 'investor'.

Literature review

Also, (Grechuk and Zabarankin, 2011a, 2011b) studied risk-sharing problems for agents with utility functionals depending only on the expected value and a deviation measure of an uncertain payoff. Moreover, all of these works formulated and studied cooperative games with players using different deviation measures as numerical representations for their attitudes towards risk. Note that, cooperative investment consider a recent problem and it is not very old, all the work before (2013) was working on risk measures without portfolio optimization problems [2]. Studied the cooperative game with a general deviation measure, and they showed that a cooperative portfolio does not, in general, accommodate the risk preferences of all agents, whereas the risk preferences of each agent are satisfied at the stage of fair sharing of cooperative portfolio's return.
[3] described the cooperative investment in a single period with an alternative utility function and alternative deviation measure, respectively. In [4] dynamic cooperative investment with the GARCH model and applied the GARCH model in the asset return. In [5] into cooperative investment in multi-period with synergy effect also suppose that U_{i} is a monetary utility
function and he solves the following problem $\sup _{X \in \mathcal{F}} U^{*}(X)$, where $X^{*}=\sum_{i=1}^{m} Y_{i}$ is a maximizer to the investment problem. In (Akturk 2019) studied Portfolio optimization with coherent risk measures with an authorized risk but not in cooperative investment [6]. Studied the economic and environmental
assessment of retailers within a supply chain management and they were taking into account the equilibrium condition of the forward and backward supply chain and their results found by the classical optimization technique. However, they did not study the problem with an authoritative risk determined by the central Bank. Furthermore [7], in their Paper, focus on A multi-period multi-product inventory model which is tested through an artificial neural network for experiencing an uncertain environment. In addition, their result shows that the proposed approach is the best for cost optimization and time minimization through an artificial neural network. Furthermore [8], their problem was designed as a risk-sharing strategy that is based on mean-variance optimizations of participants' terminal reserves. They show convergence of the risk-sharing solution and the ratios of long-term reserves. As well as, they study the impact of financial fairness on various risk-sharing strategies and their long-term limits, but they did not apply it to portfolio optimization problems.

1) In this paper, I develop (Akturk 2019) and joint it in the case of cooperative investment. Hence, we create Cooperative investment with an authorized risk introduced by the central bank where the underlying asset returns X are in some L^{∞}. Then we start to solve three key elements of cooperative investment as follows: formulate individual investment and it is different than (Akturk 2019) because in my case we need to add expected return constraints for investors and this is the first difference before. then
2) expand our problem to cooperative investment for two agents with an authority risk measure and its level determined by the central bank.
3) studying an equilibrium problem to find a fair equilibrium allocation to be satisfied and acceptable for each agent mean this point the result from equilibrium allocation for each agent is better than the result from solving the investment problem alone.

Problem formulation

Problem reformulation: Firstly: in the case of individual problems. Let us start to model risk-aversion, let $\rho_{1}, \rho_{2}, \rho_{3}: L^{p} \rightarrow R$ be three arbitrary coherent risk measures. The aim of the portfolio manager for an individual case is to choose a portfolio $\omega \in W$ that minimizes the type 1 risk $\rho_{1}\left(\omega^{T} X\right)$ while controlling the type 2 risk $\rho_{2}\left(\omega^{T} X\right)$ with a fixed threshold level $r \in R$ that while satisfying $\rho_{2}\left(\omega^{T} X\right) \leq r$ which we refer to as the risk constraint (an external regulatory authority), and expected return level reflected by $E\left[\omega^{T} X\right]$. In the case of individual investors with each risk measure defined by negative expectation, in this case, we can formulate the individual investment as follows:

$$
\begin{equation*}
\text { minimize } \rho_{1}\left(\omega^{T} X\right) \text { subject to } \rho_{2}\left(\omega^{T} X\right) \leq r, E\left[\omega^{T} X\right] \geq \pi, \omega \in W \tag{3.1}
\end{equation*}
$$

Here $\rho_{1}(Y)=E[-Y]$ for each $Y \in L^{p}$, in our case the random
vector X with arbitrary distribution and assuming that ρ_{1}, ρ_{2} are continuous from below, in this paper we characterize an optimal solution for (2.2) as a Lagrange multiplier of an associated dual problem. we need to address some literature review for portfolio optimization problems under an arbitrary joint distribution as follows: we assume $X \in L_{n}^{p}$ for a fixed $p \in[1,+\infty]$ and ρ_{1}, ρ_{2} are continuous on L^{p}, see (Kain,2009, corollary 2.3), thus ρ_{1}, ρ_{2} admit dual representations of the form:

$$
\rho_{1}(Y)=\max _{Q_{1} \in Q_{1}} E^{Q_{1}}[-Y]
$$

and

$$
\rho_{2}(Y)=\max _{Q_{2} \in \mathcal{Q}_{2}} E^{Q_{2}}[-Y]
$$

for each $Y \in L^{p}$, where $\mathcal{Q}_{1}, \mathcal{Q}_{2}$ are convex subsets of $M_{1}^{q}(P)$ such that corresponding density set $D\left(\mathcal{Q}_{1}\right), D\left(\mathcal{Q}_{2}\right)$, are convex $\sigma\left(L^{q}, L^{p}\right)$-the compact subsets of L^{q}. For each $j \in\{1,2\}$, Let us define the continuous convex function $g_{i}: R^{n} \rightarrow R$ by

$$
g_{i}(\omega)=\rho_{j}\left(\omega^{T} X\right)=\max _{V \in D\left(\mathcal{Q}_{j}\right)} E\left[-V \omega^{T} X\right]
$$

for each $\omega \in R^{n}$. We recall a few notations and facts from convex analysis. Let \mathcal{X} be a Hausdorff locally convex topological linear space with topological dual \mathcal{Y} and bilinear duality mapping $<\ldots,>: \mathcal{Y} \times \mathcal{X} \rightarrow R \quad \mathcal{X}=R^{n}$ with the usual topology which yields $\mathcal{Y}=R^{n}$ together with $\langle x, y\rangle=y^{T} x$ for every $x \in R^{n}, y \in R^{n}$.
$\mathcal{X}=L^{q}$ with $q \in[1,+\infty)$ the weak topology $\sigma\left(L^{q}, L^{p}\right)$, which yields $\mathcal{Y}=L^{p}$ together with $\langle Y, U\rangle=E[U Y]$ for every $U \in L^{q}, Y \in L^{p}$.
$\mathcal{X}=L^{\infty}$ with weak topology $\sigma\left(L^{q}, L^{p}\right)$, which yields $\mathcal{Y}=L^{p}$ together with $\langle Y, U\rangle=E[U Y]$ for every $U \in L^{q}, Y \in L^{p}$.

Let $A \subset \mathcal{X}$ be a set. cone $(A):=\{\lambda x \mid \lambda \geq 0, x \in A\}$, is called the conic hull of A. if A is convex then $\operatorname{cone}(A)$ is a convex cone. For $x \in A$, the convex cone

$$
\mathcal{N}_{A}:=\left\{y \in \mathcal{Y} \mid \forall{ }^{\prime} x \in A:<y, x>\geq<y,{ }^{\prime} x>\right\}
$$

iscalledthenormalconeof A at x.Thefunction $I_{A}: \mathcal{X} \rightarrow R \bigcup\{+\infty\}$ defined by $I_{A}(x)=0$ for $x \in A$ and $I_{A}=+\infty$ for $x \in \mathcal{X} \backslash A$ is called the indicator function A. Note that A is convex if and only if I_{A} is convex. Let $g:=\mathcal{X} \rightarrow R \bigcup\{+\infty\}$ be a function. For $x \in \mathcal{X}$, the set $\partial g:=\left\{y \in \mathcal{Y} \mid \forall{ }^{\prime} x \in \mathcal{X}: g(x \geq g(x)+\langle y, x-x\rangle\}\right.$ is called subdifferential of g at x. It A is a nonempty convex set then it is well -known that from [9] $\partial I_{A}(x)=\mathcal{N}_{A}(x)$ for every $x \in A$ and $\partial I_{A}(x)=\phi$ every $x \in \mathcal{X} \backslash A$. The function $g^{*}: \mathcal{Y} \rightarrow R \bigcup\{ \pm \infty\}$ defined by $g^{*}(y):=\sup _{x \in \mathcal{X}}(<y, x>-g(x))$ for every $x \in \mathcal{X}, y \in \mathcal{Y}$ such that g is lower semi-continuous at x.

Now, we need to formulate a second constraint qualification, we also need the following. For $A \subset \mathcal{X}$, the set

$$
\operatorname{qri}(A):=\left\{x \in A \mid \mathcal{N}_{A}(x) \text { is a subspace of } \mathcal{Y}\right\}
$$

iscalledthequasi-relativeinteriorof A see[10]. When $\mathcal{X}=R^{n}$, hence, $\operatorname{qri}(A)$ coincides with the relative interior of A. In this case, $\operatorname{qri}(A) \neq \phi$ whenever A is nonempty close, and convex. When $\mathcal{X}=L^{q}(q \in[1,+\infty])$ is considered with topology $\sigma\left(L^{q}, L^{p}\right)$ and A is nonempty, close, and convex, one has to $q r i(A) \neq \phi$ see Borwein(1992). In particular, if $A-L_{+}^{q}:=\left\{U \in L^{q} \mid \mathcal{P}\{U \geq 0\}=1\right\}$, then $\operatorname{qri}(A)=\left\{U \in L^{q} \mid \mathcal{P}\{U>0\}=1\right\}$, Borwein [10], while the usual interior A can even be empty. (For $q<+\infty$, considering the strong and topologies on L^{q} yield the same quasi relative interior for a convex set, see Borwein [10].

Note that in our problem as mentioned in (3.1) we add constraint qualification which is called (Slater's condition) as an authority risk measure defined ρ_{2} to be able to study a dual problem with zero duality gap.

The main theorems in this paper are showing theorems and their proofs, by constructing a Lagrange dual problem for (3.1) and exploiting the dual representations ρ_{1}, ρ_{2}. Moreover, the optimal solution for (3.1) can be calculated as the Lagrange multiplier of the equality constraint of dual problems at optimality where the dual problem is as follows;

$$
\begin{equation*}
\text { maximize }-r v-\lambda_{1} \pi-\lambda_{2} \tag{3.2}
\end{equation*}
$$

$$
\text { subject to } E[-U X]+v E[-V X]+\lambda_{1} E[X]+\lambda_{2} 1=0
$$

$$
U \in \mathcal{D}\left(\mathcal{Q}_{1}\right), V \in \operatorname{cone}\left(\mathcal{D}\left(\mathcal{Q}_{2}\right)\right), v \geq 0, \lambda_{1}, \lambda_{2} \in R
$$

The optimal value for individual problems is shown in Theorem (1).

Secondly: Reformulate the problem in the case of cooperative investment.

In this section, we develop and present a novel technique for solving continuous portfolio optimization problems in cooperative investment cases. Now, we suppose the two agents (investors) agree to invest their joint capital into the risky instrument. Then, divide the random variable X by the number of money investors (agents) get at the end of the investment period, where $Y_{1}, Y 2$ is the optimal allocation of the first and second agents, respectively. such that $X=Y_{1}+Y_{2}$. Now, the portfolio optimization for individual investment for first and second investors is formulated as the problem (3.1), while the cooperative investment optimization problem with an external regulatory authority with a different risk is reflected by ρ_{3} imposing the risk constraint as an obligation for the portfolio manager. This also makes sense when the portfolio manager wishes to work with two risk measures in the case of individual investment and three-risk measures in
the case of cooperative investment. Furthermore, the principle one risk ρ_{1} for the agent having higher seniority than the other risk ${ }^{\rho_{2}}$ which represents a risk constraint and controlled it within a fixed threshold level $r \in R$, which is expressed as follows $\rho_{2}\left(\omega^{T} Y_{i}\right) \leq r$. Indeed, in the case of cooperative investment, an external regulatory authority with a different
risk is reflected by $\rho_{3}(X)$, Where $X=Y_{1}+Y 2$ and $X=\omega^{T} x$. Thus, we formulate cooperative investment for the continuous portfolio optimization problem with short selling as :

$$
\begin{align*}
& \text { minmize } \quad \rho_{1}\left(\omega^{T} Y_{1}\right) \\
& \text { S.T. } \\
& \rho_{2}\left(\omega^{T} Y_{2}\right) \leq r_{1}, \rho_{3}\left(\omega^{T} x\right) \leq r_{2} \\
& E\left[\omega^{T} Y_{1}\right] \geq \pi_{1}, E\left[\omega_{2}^{T} Y_{2}\right] \geq \pi_{2} \tag{3.3}\\
& X=Y_{1}+Y_{2}, \omega \in \mathcal{W}
\end{align*}
$$

The portfolio manager aims to choose a portfolio $\omega \in \mathcal{W}$ that minimizes the type-1 risk $\rho_{1}\left(\omega^{T} Y_{1}\right)$ while controlling the type-2 for second agents $\rho_{2}\left(\omega^{T} Y_{2}\right)$ within a fixed threshold level $r_{1} \in R$ and controlling the type-3 risk $\rho_{3}\left(\omega^{T} X\right)$ within a fixed threshold level $r \in R$, note that when you need to choose $r_{2} \in R$ is less than or equal to value as solving minimization individual problem for each agent. In Particular, For a random vector X with an arbitrary distribution and assuming that $\rho_{1}, \rho_{2}, \rho_{3}$ is continuous from below. Note that, this framework covers as special cases the problem of maximizing expected return subject to a risk constraint if we take $\rho_{1}\left(Y_{1}\right)=E\left[-Y_{1}\right]$ for each $Y \in L^{p}$ as well as the problem of minimizing (the type 1) risk while maintaining a high-enough expected return if we take $\rho_{2}\left(Y_{2}\right)=E\left[-Y_{2}\right]$ and $\rho_{3}(X)=E[-X]$ for each $Y_{1}, Y_{2}, X \in L^{p}$.

So the Lagrange dual problem (3.3) for cooperative investment problem takes the more explicit form as follows

$$
\begin{align*}
& \text { maximize }-r_{1} v_{1}-r_{2} v_{2}-\lambda_{1} \pi_{1}-\lambda_{2} \pi_{2}-\lambda_{3} \tag{3.4}\\
& \text { subject to } E\left[-U Y_{1}\right]+v_{1} E\left[-V_{1} Y_{2}\right]+v_{2} E\left[V_{2} x\right]+\lambda_{1} E\left[Y_{1}\right]+\lambda_{2} E\left[Y_{2}\right]+\lambda_{3} 1=0 \\
& U \in \mathcal{D}\left(\mathcal{Q}_{1}\right), V_{1} \in \mathcal{D}\left(\mathcal{Q}_{2}\right), V_{3} \in \mathcal{D}\left(\mathcal{Q}_{3}\right), v_{1,2} \in R, \lambda_{1,2,3} \in R
\end{align*}
$$

the optimal value for the cooperative Investment problem is shown in theorem(2)

Remark

According to the condition of Karush-Kuhn-Tucker condition for a problem and from [9], thus an optimal solution for (3.1),(3.3) is an optimal solution for their dual problem (3.2), (3.4) for individual investment problem and cooperative investment problem, respectively. Note that dual problem (3.2), and (3.4) is equal to (4.1), and (4.2) in the next section. According to (Akturk and Ararat, 2019) Slater's condition (as an external regulatory authority with a different risk perception reflected by ρ_{2}, and ρ_{3} for individual and cooperative investment
problems, respectively) already guarantees the existence of an optimal solution. We reformulated the dual problem and defined variables U, V, v, λ and the relationship between them in the dual problem (3.2),(3.4), thus, the existence of an optimal for a dual problem is not guaranteed prior. However, when we rewrite the dual problem and rewrite the objective (first line of the problem in both (3.2),(3.4)) these automatically imply the existence of an optimal solution for the Lagrange multiplier for the equality constraint in the dual problem (3.2),(3.4), which is shown to give an optimal for the original problem (3.1), (3.3) respectively, for more details see [9]. Consequently, we already find the optimal solution but when we change the value of r_{2}, r_{3} as in the fixed level of risk for the second investor, this characterizes the set of all Pareto optimal allocations, which can be visualized as the efficient frontier.

Fair equilibrium allocation

Now, the neutral question is how can we select a unique 'fair' point on the efficient frontier. In the next section, we will address the unique solution that satisfied each agent, thus, we need to find a special point which is called 'Equilibrium allocation'. Hence, in the third step for solving the cooperative investment problem (3.3), we need to find a fair point that is called " an equilibrium allocation" among all the points in the efficient frontier. Note that: to find the whole efficient frontier we need to change the value for $r_{1}, r_{2}, \pi_{1}, p i_{2}$ in the cooperative investment (3.3). The efficient frontier is the convex curve between two investors for the main problem in the case of a cooperative investment problem (3.3) "concave curve for its corresponding dual problem (3.4)". According to the theory of market Equilibrium, the price of assets will no longer be given in advance. Different agents demand in accordance with their preferences and their budget. According to (Follmer, Schied, 2009),

Steps for Finding Equilibrium allocation

(1) we need the equilibrium allocation for each agent's 'investors' by solving the utility maximization problem of an agent $i \in I$ with respect to price density φ.

$$
\begin{equation*}
\text { maximize } U_{i}\left(Y_{i}\right) \text { s.t } E(\varphi Y i) \leq E\left(\varphi W_{i}\right), \quad i \in I=1,2, \ldots, m \tag{3.5}
\end{equation*}
$$

where $U_{i}=E\left[u_{i}().\right]$, and we can suppose there are no initial endowments, in this special case we can replace the condition
$E\left(\varphi Y_{i}\right) \leq 0$ and find an equilibrium allocation in terms of price density φ. Hence, to formulate each problem for each agent (investor) $i \in I=\{1,2,3, \ldots, m\}$ to find each equilibrium allocation in terms of price density φ

$$
\begin{align*}
& \text { minmize }_{Y_{1}} \quad \rho_{1}\left(Y_{i}\right) \tag{3.6}\\
& \text { s.t } \quad \rho_{2}(X) \leq r \\
& E\left[Y_{1}\right] \geq \pi \\
& E\left[\varphi Y_{i}\right] \leq 0
\end{align*}
$$

and we reformulate it for each agent (investor $i \in I=\{1,2,3, \ldots, m\}$ as follows:
maximize $_{Y_{1}} E\left[-U Y_{i}\right]+v_{1}\left(E\left[-M_{1} X\right]+r\right)+v_{2} E\left[-\varphi M_{2} Y_{i}\right]+\lambda_{1}\left(E\left[Y_{i}\right]-\pi_{1}\right)$
in our problem, we will say Y_{i}^{φ} solve the utility maximization problem for the agent 'investor' $i \in I$ with respect to the price density φ. Thus, the key problem is whether φ can be chosen in such a way that the requested profiles $Y_{i}^{\varphi} \quad i \in I$ form a feasible allocation. Moreover, (Follmer 2009) defined 'ArrowDebreu -equilibrium' as follows

Definition

A price density φ^{*} together with a feasible allocation $\left(Y_{i}^{*}\right)_{i \in I}$ is called an Arrow-Debreu equilibrium if each Y_{i}^{*} solves the utility maximization problem of an agent $i \in A$ with respect φ^{*}.

In particular, the initial endowments $W_{i}, i \in I$ are assumed to be non-negative. Moreover, we assume $P^{\varphi}\left[W_{i}>0\right] \neq 0$ for all $i \in I$ and $E[X]<\infty$, where $\sum_{i \in I} W_{i}=X$. In our case, we have $\sum_{i \in I} Y_{i}=X$ since we don't have an initial endowment. A function $\varphi \in L^{1}(\Omega, \mathcal{F}, P)$, such that $\varphi>0 \quad P-$ a.s, is a price density if $E[\varphi X]<\infty$ more that this condition is satisfied as soon as φ is bounded, due to our assumption $E[X]<\infty$. Given a price density ${ }^{\varphi}$, each agent faces exactly the optimization problem in terms of price measure $P^{\varphi} \approx P$. Hence, it $\left(Y_{i}^{*}\right)_{i \in I}$ is an equilibrium allocation with respect to price density φ^{*}. Feasibility implies $0 \leq Y_{i}^{*} \leq X$ and so it follows as in the proof of (corollary 3.42), (Follmer 2009) that

$$
Y_{i}^{*}=I_{i}^{+}\left(c_{i} \varphi^{*}\right), \quad i \in I
$$

with a positive constant $c_{i}>0$. Indeed, according to (Follmer,2009), we have the inverse function of the strictly decreasing function in (4.2), then the optimal X^{*}, where $X^{*}=\sum_{i \in I} Y_{i}^{*}$. Thus, $X^{*}=I(c \varphi)$, where each equilibrium allocation $Y_{i}^{*}=I_{i}^{+}\left(c_{i} \varphi^{*}\right), \quad c=\sum_{i \in I} c_{i}$, and I^{+}is simply the positive part of the function $I=\left(U^{\prime}\right)^{-1}$, it's the inverse of restriction of U^{\prime} to $[0, \infty]$, were In our problem after rewriting dual representation for each risk preference for each agent (investor). Hence, our problem will be written as follows:

$$
\begin{equation*}
\text { maximize } \mathcal{U}_{i}\left(Y_{i}\right) \text { s.t } E(\varphi Y i) \leq 0, \quad i \in I=1,2, \ldots ., m \tag{3.8}
\end{equation*}
$$

where,
$\mathcal{U}=E\left[-U Y_{i}\right]+v_{1}\left(E\left[-M_{1} X\right]+r\right)+v_{2} E\left[-\varphi M_{2} Y_{i}\right]+\lambda_{1}\left(E\left[Y_{i}\right]-\pi_{1}\right)$
(2) then, joint equilibrium allocation for each agent 'investor' and solve the feasibility problem to find the equilibrium price.

Let us start to formulate an equilibrium problem; Consider a finite set I of economic agents and a convex set \mathcal{X} of an admissible claim. Suppose at the initial time $t=0$ each agent $i \in I$ in our case in this paper $i=1,2$ two investors, so each agent 'investor' has no initial endowment $w_{i}, i=1,2$ whose discount payoff at the time $t=1$, furthermore, Agents may want to exchange since there is no initial endowment w_{i} , hence admissible claim $Y_{i} \in \mathcal{X}$. Consequently, This could lead to a new allocation $Y_{i}, i \in I=\{1,2\}$ ad the total demand matches the overall supply.

Definition (Follmer 2009)

A collection $Y_{i}, i \in I=\{1,2\} \subset \mathcal{X}$ is called a feasible allocation if it satisfies the market clearing condition

$$
\sum_{i \in I} Y_{i}=X, \quad P-a . s
$$

The budget constraints will be determined by a linear pricing rule of the form

$$
\Phi(X):=E[\varphi X], \quad X \in \mathcal{X}
$$

Where φ is a price density, and \mathcal{F} feasible set, i.e an integrable function (Ω, \mathcal{F}), such that $\varphi>0$ p- a.s and $E\left[Y_{i} \mid \varphi\right]<\infty$ for all $i \in I$. To any such, φ we can associate a normalized price measure $P^{\varphi} \approx P$ with density $\varphi E[\varphi]^{-1}$.

Note that the market clearing condition

$$
X=\sum_{i \in I} Y_{i}^{*}=\sum_{i \in I} I_{i}^{+}\left(c_{i} \varphi^{*}\right)
$$

Consequently, we can write the feasibility problem as follows:

$$
\begin{align*}
& \text { Find } \quad P \tag{3.9}\\
& \text { subject to } \\
& Y_{1}+Y_{2}=X_{r}(\omega) \\
& \sum\left(P X_{r}(\omega)=0\right. \\
& \rho_{2}\left(Y_{2}\right)=r
\end{align*}
$$

this problem can solve as follows:

$$
\begin{align*}
& \text { minimize } 0 \tag{3.10}\\
& \text { subject to } \\
& Y_{1}+Y_{2}=X_{r}(\omega)
\end{align*}
$$

$$
\begin{aligned}
& \sum\left(P X_{r}(\omega)=0\right. \\
& \rho_{2}\left(Y_{2}\right)=r
\end{aligned}
$$

To any such, φ we can associate a normalized price measure $P^{\varphi} \approx P$ with density $\varphi E[\varphi]^{-1}$, see (Follmer 2009). Note that, the aim for solving the feasibility problem is to get at the end fair point which is on efficient frontier for more details for applying this in the real market: we solve the feasibility problem we have the value for the price then plug the value for price in each equilibrium allocation since it is written in terms of price density.

Main results

Thermos and Proofs: Thermo 1: The optimal value for the individual problem (3.1) is equal to the optimal value for the corresponding dual problem.

$$
\begin{equation*}
\text { maximize }-r v-\lambda_{1} \pi-\lambda_{2} \tag{4.1}
\end{equation*}
$$

subject to $E[-U x]+v E[-V x]+\lambda_{1} E[x]+\lambda_{2} 1=0$

$$
U \in \mathcal{D}\left(\mathcal{Q}_{1}\right), V \in \operatorname{cone}\left(\mathcal{D}\left(\mathcal{Q}_{2}\right)\right), v \geq 0, \lambda_{1}, \lambda_{2} \in R
$$

and optimal value denotes it by

$$
p=\sup _{v \geq, \lambda_{i} \in R} d\left(v, \lambda_{1}, \lambda_{2}\right) \text { for } i=1,2
$$

for each $v \geq 0$, and $\lambda_{i}, i=1,2 \in R$.
Proof: Let us denote p the optimal value of the problem (3.1) Since the optimal value for the problem (3.1) is the optimal value of the Lagrange dual problem (4.1), that is

$$
p=\sup _{v \geq 0, \lambda_{1}, 2 \in R} d\left(v, \lambda_{1}, \lambda_{2}\right)
$$

where, for each $v \geq 0, \lambda_{1}, \lambda_{2} \in R$, thus

$$
d\left(v, \lambda_{1}, \lambda_{2}\right)=\inf _{\omega \in R^{n}}\left(\rho_{1}\left(\omega^{T} x\right)+v\left(\rho_{2}\left(\omega^{T} x\right)-r\right)+\lambda_{1}\left(E\left[\omega^{T} x\right]-\pi\right)+\lambda_{2}\left(1^{T} \omega-1\right)\right)
$$

By using a dual representation ρ_{1}, ρ_{2}, we fix $v \geq 0, \lambda_{1}, \lambda_{2} \in R$

$$
\left.\left.d\left(v, \lambda_{1}, \lambda_{2}\right)=i n f_{\omega \in R^{n}} \max _{U \in \mathcal{D}\left(Q_{1}\right)} E\left[-U \omega^{T} x\right]\right)+v \max _{V \in D\left(Q_{2}\right)} E\left[-V \omega^{T} x\right]\right)+\lambda_{1}\left(E\left[\omega^{T} x\right]\right)+\lambda_{2}\left(1^{T} \omega\right)-r v-\lambda_{1} \pi-\lambda_{2}
$$

let $\quad f(\omega, U, V):=E\left[-U \omega^{T} x\right]+v \quad E\left[-V \omega^{T} x\right]+\lambda_{1} E\left[\omega^{T} x\right]+\lambda_{2} 1^{T} \omega$ for each $\omega \in R^{n}, \quad U \in \mathcal{D}\left(\mathcal{Q}_{1}\right), V \in \mathcal{D}\left(\mathcal{Q}_{2}\right)$. Note that $\omega \rightarrow f(\omega, U, V)$ is convex(affine) and continuous, $(U, V) \rightarrow f(\omega, U, V)$ concave (affine) and $\sigma\left(L^{q}, L^{p}\right)$-continuous (continuous), and $\mathcal{D}\left(\mathcal{Q}_{1}\right) \times \mathcal{D}\left(\mathcal{Q}_{2}\right) \quad \sigma\left(L^{q}, L^{p}\right)$-compact. Hence, From classical minmax theorem see [11] ensures that $d\left(v, \lambda_{1}, \lambda_{2}\right)=\sup _{\left(U, V \in \Omega\left(Q_{1} \nmid O\left(Q_{2}\right)\right.\right.} \inf _{\omega \in R^{n}}\left(E\left[-U \omega^{T} x\right]+v E\left[-V \omega^{T} x\right]+\lambda_{1} E\left[\omega^{T} x\right]+\lambda_{2} T^{T} \omega\right)-r v-\lambda_{1} \pi-\lambda_{2}$ Clearly, for every $(U, V) \in \mathcal{D}\left(\mathcal{Q}_{1}\right) \times \mathcal{D}\left(\mathcal{Q}_{2}\right)$

$$
\inf _{\omega} \in R^{n}\left(E[-U x]+v \quad E[-V x]+\lambda_{1} E[x]+\lambda_{2} 1\right)^{T} \omega=\left\{\begin{array}{cc}
0, & \text { if } E[-U x]+V E[-V x]+\lambda_{1} E[x]+\lambda_{2} 1=0 \\
-\infty, & \text { else }
\end{array}\right.
$$

It follows that

$$
d\left(v, \lambda_{1}, \lambda_{2}\right)=\left\{\begin{array}{cc}
-r v-\lambda_{1} \pi-\lambda_{2}, & \text { if } \left.\exists(U, V) \in \mathcal{Q}_{1}\right) \times \mathcal{D}\left(\mathcal{Q}_{2}: E[-U x]+v E[-V x]+\lambda_{1} E[x]+\lambda_{2} 1=0\right. \\
-\infty, & \text { else }
\end{array}\right.
$$

So the Lagrange dual problem (3.1) for the individual cases takes the more explicit form as follows

$$
\begin{equation*}
\text { maximize }-r v-\lambda_{1} \pi-\lambda_{2} \tag{4.2}
\end{equation*}
$$

subject to $E[-U x]+v E[-V x]+\lambda_{1} E[x]+\lambda_{2} 1=0$
$U \in \mathcal{D}\left(\mathcal{Q}_{1}\right), V \in \mathcal{D}\left(\mathcal{Q}_{2}\right), v \geq 0, \lambda_{1}, \lambda_{2} \in R$
Now, we make some changes in variables to avoid the multiplication of variables v, V as follows; if $M \in \operatorname{cone}\left(\mathcal{D}\left(\mathcal{Q}_{2}\right)\right)$, then they exist $v \geq 0$ and $V \in \mathcal{D}\left(\mathcal{Q}_{2}\right)$ such that $M=v V$: we simply take $v=E[M]$ and $V=\frac{M}{v}$ if $v>0$ and arbitrary $V \in \mathcal{D}\left(\mathcal{Q}_{2}\right)$ if $\quad v=0$. Conversely, if $v \geq 0$ and $V \in \mathcal{D}\left(\mathcal{Q}_{2}\right)$, then $M=\nu V \in \operatorname{cone}\left(\mathcal{D}\left(\mathcal{Q}_{2}\right)\right)$. These observations allow us to reformulate a dual problem(4.3) as (4.1). Note that both problems have p their optimal value. Let $\left(U^{*}, M^{*}, \lambda_{1}^{*}, \lambda_{2}^{*}\right) \in L^{q} \times L^{p} \times R \times R$ be an optimal solution for (4.1), see ([10]corollary 4.8), there is a strong duality with corresponding Lagrange dual problem that relaxes the equality constraint, that is, we have

$p=\inf _{\omega \in R^{n} U \in \mathcal{D}\left(Q_{1}\right), M \in \operatorname{cone}\left(\mathcal{D}\left(Q_{2}\right)\right), \lambda_{1,2} \in R}\left(-r E[M]-\lambda_{1} \pi-\lambda_{2}+E\left[-U \omega^{T} x\right]+E\left[-M \omega^{T} x\right]+\lambda_{1} E\left[\omega^{T} x\right]+\lambda_{2} \omega^{T} 1\right)$ also ([10], corollary 4.8) [10] ensures that there exists an optimal Lagrange multiplier $\omega^{*} R^{n}$. By the first-order condition with respect to $U=U^{*}$, thus we have that

$$
0 \in-\left(\omega^{*}\right)^{T} x-\mathcal{N}_{\mathcal{D}\left(\mathcal{Q}_{1}\right)}\left(U^{*}\right)
$$

this means

$$
E\left[-U^{*}\left(\omega^{*}\right)^{T} x\right] \geq E\left[-U^{\prime}\left(\omega^{*}\right)^{T} x\right]
$$

for every $U^{\prime} \in \mathcal{D}\left(\mathcal{Q}_{1}\right)$, that is $\rho_{1}\left(\left(\omega^{*}\right)^{T} x\right)=E\left[-U^{*}\left(\omega^{*}\right)^{T} x\right]$
We conclude that $U^{*} \in \psi\left(\omega^{*}\right)$ where $\psi\left(\omega^{*}\right)$ defines as $\psi_{j}\left(\omega^{*}\right):=\operatorname{argmax}_{V \in \mathcal{D}(\mathcal{Q})} E\left[-V x^{T} \omega\right]$, see (Akturk, Ararat,2019, Lemma 3.4), Hence,

$$
\begin{equation*}
E\left[-U^{*} x\right] \in \partial g_{1}\left(\omega^{*}\right) \tag{4.3}
\end{equation*}
$$

and the same way, the first order condition with respect to
$M=M^{*}$ yields

$$
E\left[-M^{*}\left(\left(\omega^{*}\right)^{T} x+r\right)\right] \geq E\left[-M^{\prime}\left(\left(\omega^{*}\right)^{T} x+r\right)\right]
$$

for every $M^{\prime} \in \operatorname{cone}\left(\mathcal{D}_{2}\right)$, that is

$$
\begin{equation*}
E\left[-M^{*}\left(\left(\omega^{*}\right)^{T} x+r\right)\right]=\max _{M^{\prime} \in \operatorname{cone}\left(\mathcal{D}(\mathcal{Q})_{2}\right)} E\left[-M^{\prime}\left(\left(\omega^{*}\right)^{T} x+r\right)\right] \tag{4.4}
\end{equation*}
$$

Since $\operatorname{cone}\left(\mathcal{D}_{2}\right)$ is the cone, the quantity $\sup _{M^{\prime} \in \text { cone }\left(\mathcal{D}(\mathcal{Q})_{2}\right)} E\left[-M^{\prime}\left(\left(\omega^{*}\right)^{T} x+r\right)\right]$ can either take the value 0 or $+\infty$, Since $E\left[-M^{\prime}\left(\left(\omega^{*}\right)^{T} x+r\right)\right]$ is a finite number, both sides of (5.3) must equal to zero, thus we obtain

$$
\begin{equation*}
0=\max _{M^{\prime} \in \operatorname{cone}\left(\mathcal{D}(\mathcal{Q})_{2}\right)} E\left[-M^{\prime}\left(\left(\omega^{*}\right)^{T} x+r\right)\right]=\left(\sup _{\lambda^{\prime} \geq 0} \lambda^{\prime}\right)\left(\max _{V^{\prime} \in \mathcal{D}\left(\mathcal{Q}_{2}\right)} E\left[-V^{\prime}\left(\left(\omega^{*}\right)^{T} x+r\right)\right]\right) \tag{4.5}
\end{equation*}
$$

$\left.=+\infty \cdot \rho_{2}\left(\left(\omega^{*}\right)^{T} x+r\right)=+\infty\left(\rho_{2}\left(\omega^{*}\right)^{T} x\right)-r\right)$

Moreover, we have optimality $\left.\rho_{2}\left(\omega^{*}\right)^{T} x\right)=r$.

Let $v^{*}=E\left[M^{*}\right]$, and suppose first that $v^{*}>0$ and let $V^{*}:=\frac{M^{*}}{v^{*}} \in \mathcal{D}\left(\mathcal{Q}_{2}\right)$ Then,

$$
E\left[-M^{*}\left(\left(\omega^{*}\right)^{T} x+r\right)\right]=v^{*} E\left[\left(\omega^{*}\right)^{T} x+r\right]=0
$$

so that, $E\left[-V^{*}\left(\omega^{*}\right)^{T} x\right]=r$. Hence

$$
\left.E\left[-V^{*}\left(\omega^{*}\right)^{T} x\right]=r=\rho_{2}\left(\omega^{*}\right)^{T} x\right)=\max _{V^{\prime} \in \mathcal{D}\left(\mathcal{\Omega}_{2}\right)} E\left[-V^{\prime}\left(\omega^{*}\right)^{T} x\right]
$$

that is $V^{*} \in \psi_{2}\left(\omega^{*}\right)$. Actually

$$
E\left[-V^{*} x\right] \in \partial g_{2}\left(\omega^{*}\right)
$$

Furthermore, suppose that $v^{*}=0$ that is $M^{*}=0 \quad p-$ almost sure. Let us pack some $V^{*} \in \psi_{2}\left(\omega^{*}\right)$ arbitrarily. since $\psi_{2}\left(\omega^{*}\right) \neq \phi$ because ρ_{2} is assumed to be continuous from below, thus, in both cases we may write $M^{*}=v^{*} V^{*}$ and we can write

$$
\begin{equation*}
E\left[-M^{*} x\right]=v^{*} E\left[-V^{*} x\right] \in v^{*} \partial g_{2}\left(\omega^{*}\right) \tag{4.6}
\end{equation*}
$$

Now, from the feasibility of $\left(U^{*}, M^{*}, \lambda_{1}^{*}, \lambda_{2}^{*}\right)$ the dual problem (4.1), we have

$$
\begin{equation*}
E\left[-U^{*} x\right]+E\left[-M^{*} x\right]+\lambda_{1}^{*} \pi+\lambda_{2}^{*} 1=E\left[-U^{*} x\right]+v^{*} E\left[-V^{*}\right]+\lambda_{1}^{*} \pi+\lambda_{2}^{*} 1=0 \tag{4.7}
\end{equation*}
$$

Consequently, from (4.3),(4.6), and (4.7) we obtain

$$
0 \in \partial g_{1}\left(\omega^{*}\right)+v^{*} \partial g_{2}\left(\omega^{*}\right)+\lambda_{1}^{*} \pi+\lambda_{2}^{*} 1
$$

Finally, According to the first order condition with respect to $\lambda_{1,2}=\lambda_{1,2}^{*}$, respectively. Also, we got

$$
1^{T} \omega^{*}=1
$$

where $\omega^{*} \in \mathcal{W}$.

Theorem 2: The optimal value for the cooperative investment problem (3.3) is equal to the optimal value for the corresponding dual problem

$$
\begin{equation*}
\text { maximize }-r_{1} v_{1}-r_{2} v_{2}-\lambda_{1} \pi_{1}-\lambda_{2} \pi_{2}-\lambda_{3} \tag{4.8}
\end{equation*}
$$

subject to $E\left[-U Y_{1}\right]+v_{1} E\left[-V_{1} Y_{2}\right]+v_{2} E\left[V_{2} x\right]+\lambda_{1} E\left[Y_{1}\right]+\lambda_{2} E\left[Y_{2}\right]+\lambda_{3} 1=0$

$$
U \in \mathcal{D}\left(\mathcal{Q}_{1}\right), V_{1} \in \mathcal{D}\left(\mathcal{Q}_{2}\right), V_{3} \in \mathcal{D}\left(\mathcal{Q}_{3}\right), v_{1,2} \in R, \lambda_{1,2,3} \in R
$$

and optimal value denotes it by

$$
p=\sup _{v_{i} \geq 0, \lambda_{1}, \lambda_{2}, \lambda_{3} \in R} d\left(v_{1}, v_{2}, \lambda_{1}, \lambda_{2}, \lambda_{3}\right), \text { For } i=1,2
$$

for each $v_{1}, v_{2} \geq 0, \lambda_{1}, \lambda_{2}, \lambda_{3} \in R$.
Note that the proof for case cooperative investment with an authorized risk measure for theorem (2) is similar to the proof of the theorem (1) just we have a more constraints since the problem two agents (investor) managing their risk and taking into account an authorized risk determine by the central bank.

Proof: Let us denote P the optimal value of the problem (3.3) Since the optimal value for the problem (3.3) is the optimal value corresponding to the Lagrange dual problem for (4.8), that is

$$
p=\sup _{v_{i} \geq 0, \lambda_{1}, \lambda_{2}, \lambda_{3} \in R} d\left(v_{1}, v_{2}, \lambda_{1}, \lambda_{2}, \lambda_{3}\right), \text { For } i=1,2
$$

where, for each $v_{1}, v_{2} \geq 0, \lambda_{1}, \lambda_{2}, \lambda_{3} \in R$, thus

$$
\begin{aligned}
& d\left(v_{1}, v_{2}, \lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\inf _{\omega \in R^{n}}\left(\rho_{1}\left(\omega^{T} Y_{1}\right)+v_{1}\left(\rho_{2}\left(\omega^{T} Y_{2}\right)-r_{1}\right)+v_{2}\left(\rho_{3}\left(\omega^{T} x\right)-r_{2}\right)+\lambda_{1}\left(E\left[\omega^{T} Y_{1}\right]-\pi_{1}\right)+\lambda_{2}\left(E\left[\omega^{T} Y_{2}\right]-\pi_{2}\right)\right. \\
& \left.+\lambda_{3}\left(1^{T} \omega-1\right)\right)
\end{aligned}
$$

By using Dual representation $\rho_{1}, \rho_{2}, \rho_{3}$, we fix $v_{1}, v_{2} \geq 0$, $\lambda_{1}, \lambda_{2}, \lambda_{3} \in R$

```
\(\left.\left.d\left(\nu_{1}, v_{2}, \lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\inf _{\omega \in R^{n}}\left(\max _{U \in \mathcal{D}\left(Q_{1}\right)} E\left[-U \omega^{T} Y_{1}\right]\right)+v_{1} \max _{V_{1} \in \mathcal{D}\left(Q_{2}\right)} E\left[-V_{1} \omega^{T} Y_{2}\right]\right)+v_{2} \max _{V_{2} \in \mathcal{D}\left(\mathbb{Q}_{3}\right)} E\left[-V_{2} \omega^{T} x\right]\right)\)
\(\left.+\lambda_{1}\left(E\left[\omega^{T} Y_{1}\right]\right)+\lambda_{2}\left(E\left[\omega^{T} Y_{2}\right]\right)+\lambda_{3}\left(1^{T} \omega\right)\right)-r_{1} v_{1}-r_{2} v_{2}-\lambda_{1} \pi_{1} \lambda_{2} \pi_{2}-\lambda_{3}\)
```

Let
$f\left(\omega, U, V_{1}, V_{2}\right):=E\left[-U \omega^{T} Y_{1}\right]+V_{1} E\left[-V_{1} \omega^{T} Y_{2}\right]+V_{2} E\left[-V_{2} \omega^{T} x\right]+\lambda_{1} E\left[\omega^{T} X\right]+\lambda_{1} E\left[\omega^{T} Y_{1}\right]+\lambda_{2} E\left[\omega^{T} Y_{2}\right]+\lambda_{3} 1^{T} \omega$ each $\quad \omega \in R^{n}, \quad U \in \mathcal{D}\left(\mathcal{Q}_{1}\right), V_{1} \in \mathcal{D}\left(\mathcal{Q}_{2}\right), V_{3} \in \mathcal{D}\left(\mathcal{Q}_{3}\right) \quad$ Note that $\omega \rightarrow f\left(\omega, U, V_{1}, V_{2}\right) \quad$ is convex(affine) and continuous, $\left(U, V_{1}, V_{2}\right) \rightarrow f\left(\omega, U, V_{1}, V_{2}\right)$ is concave (affine) and $\sigma\left(L^{q}, L^{p}, L^{s}\right)$
-continuous (continuous), and $\mathcal{D}\left(\mathcal{Q}_{1}\right) \times \mathcal{D}\left(\mathcal{Q}_{2}\right) \times \mathcal{D}\left(\mathcal{Q}_{3}\right)$ is $\sigma\left(L^{q}, L^{p}, L^{s}\right)$-compact. Hence, from classical minmax theorem see (Sion,1958) ensures that
$d\left(v_{1}, v_{2}, \lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\sup _{\left(U, V_{1}, V_{2}\right) \in \mathcal{D}\left(\left(_{1}\right) \times D\left(Q_{2}\right) \times \mathcal{D}\left(Q_{3}\right) \theta \in R^{n}\right.} \inf \left(E\left[-U \omega^{T} Y_{1}\right]+v_{1} E\left[-V_{1} \omega^{T} Y_{2}\right]+v_{2} E\left[-V_{2} \omega^{T} x\right]+\right.$
$\left.\lambda_{1} E\left[\omega^{T} Y_{1}\right]+\lambda_{2} E\left[\omega^{T} Y_{2}\right]+\lambda_{3} 1^{T} \omega\right)-r_{1} \nu_{1}-r_{2} \nu_{2}-\lambda_{1} \pi_{1} \lambda_{2} \pi_{2}-\lambda_{3}$

Clearly, for every $\left(U, V_{1}, V_{2}\right) \in \mathcal{D}\left(\mathcal{Q}_{1}\right) \times \mathcal{D}\left(\mathcal{Q}_{2}\right) \times \mathcal{D}\left(\mathcal{Q}_{3}\right)$
$\inf \in R^{n}\left(E\left[-U Y_{2}\right]+v_{1} E\left[-V_{1} Y_{2}\right]+v_{2} E\left[-V_{1} x\right]+\lambda_{1} E\left[Y_{1}\right]++\lambda_{2} E\left[Y_{2}\right]+\lambda_{3} 1\right)^{T} \omega$
$=\left\{\begin{array}{cc}0, & \text { if } E\left[-U Y_{1}\right]+v_{1} E\left[-V_{1} Y_{2}\right]+v_{2} E\left[-V_{2} x\right]+\lambda_{1} E\left[Y_{1}\right]+\lambda_{2} E\left[Y_{2}\right]+\lambda_{3} 1=0 \\ -\infty, & \text { else }\end{array}\right.$ It follows that

```
\(d\left(v_{1}, v_{2}, \lambda_{1}, \lambda_{2}, \lambda_{3}\right)\)
\(=\left\{\begin{array}{cc}-r_{1} \nu_{1}-r_{2} V_{2}-\lambda_{1} \pi_{1}-\lambda_{2} \pi_{2}-\lambda_{3}, & \left.\text { if } \exists\left(U, V_{1}, V_{2}\right) \in \mathcal{\mathcal { Q } _ { 1 }}\right) \times \mathcal{D}\left(\mathcal{Q}_{2} \times \mathcal{D}\left(\mathcal{Q}_{3}:\right.\right. \\ -\infty, & E\left[-U Y_{1}\right]+V_{1} E\left[-V_{1} Y_{2}\right]+V_{2} E\left[-V_{2} x\right]+\lambda_{1} E\left[Y_{1}\right]+\lambda_{2} E\left[Y_{2}\right]+\lambda_{3} 1=0 \\ \text { else }\end{array}\right.\)
```

So the Lagrange dual problem (4.8) for the cooperative investment problem takes the more explicit form as follows:

$$
\begin{equation*}
\text { maximize }-r_{1} v_{1}-r_{2} v_{2}-\lambda_{1} \pi_{1}-\lambda_{2} \pi_{2}-\lambda_{3} \tag{4.9}
\end{equation*}
$$

subject to $E\left[-U Y_{1}\right]+v_{1} E\left[-V_{1} Y_{2}\right]+v_{2} E\left[V_{2} x\right]+\lambda_{1} E\left[Y_{1}\right]+\lambda_{2} E\left[Y_{2}\right]+\lambda_{3} 1=0$
$U \in \mathcal{D}\left(\mathcal{Q}_{1}\right), V_{1} \in \mathcal{D}\left(\mathcal{Q}_{2}\right), V_{3} \in \mathcal{D}\left(\mathcal{Q}_{3}\right), v_{1,2} \in R, \lambda_{1,2,3} \in R$
Now, we make some changes in variables to avoid the multiplication of variables $v_{1}, V_{1}, v_{2}, V_{2}$, as follows; if $M_{1} \in \operatorname{cone}\left(\mathcal{D}\left(\mathcal{Q}_{2}\right)\right)$, then their exist $v_{1} \geq 0$ and $V_{1} \in \mathcal{D}\left(\mathcal{Q}_{2}\right)$ such that $M_{1}=v_{1} V_{1}$: we simply take $v_{1}=E\left[M_{1}\right]$ and $V_{1}=\frac{M_{1}}{v_{1}}$ if $v_{1}>0$ and arbitrary $V_{1} \in \mathcal{D}\left(\mathcal{Q}_{2}\right)$ if $v_{1}=0$. Conversely, if $v_{1} \geq 0$ and $V_{1} \in \mathcal{D}\left(\mathcal{Q}_{2}\right)$, then $M_{1}=v_{1} V_{1} \in \operatorname{cone}\left(\mathcal{D}\left(\mathcal{Q}_{2}\right)\right)$. Similarly, variables if $M_{2} \in \operatorname{cone}\left(\mathcal{D}\left(\mathcal{Q}_{3}\right)\right)$, then their exist $v_{2} \geq 0$ and $V_{2} \in \mathcal{D}\left(\mathcal{Q}_{2}\right)$ such that $M_{2}=v_{2} V_{2}$: we simply take $v_{2}=E\left[M_{2}\right]$ and $V_{2}=\frac{M_{2}}{v_{2}}$ if $v_{2}>0$ and arbitrary $V_{2} \in \mathcal{D}\left(\mathcal{Q}_{3}\right)$ if $v_{2}=0$. Conversely, if $v_{2} \geq 0$ and $V_{2} \in \mathcal{D}\left(\mathcal{Q}_{3}\right)$, then $M_{2}=v_{2} V_{2} \in \operatorname{cone}\left(\mathcal{D}\left(\mathcal{Q}_{3}\right)\right)$ let These observations allow us to reformulate a dual problem (4.9) as (4.8). Note that both problems have p their optimal value.

Let $\quad\left(U^{*}, M_{1}^{*}, M_{2}^{*}, \lambda_{1}^{*}, \lambda_{2}^{*}, \lambda_{3}^{*}\right) \in L^{q} \times L^{p} \times L^{s} \times R \times R \times R \quad$ be \quad an optimal solution for (4.2), see ([10], corollary 4.8) [10], there is a strong duality with corresponding Lagrange dual problem that relaxes the equality constraint, that is, we have

$$
\begin{aligned}
& p=\inf _{\omega \in R^{n} U \in \mathcal{D}\left(\mathcal{Q}_{1}\right), M_{1} \in \operatorname{cone}\left(\mathcal{D}\left(\mathcal{Q}_{2}\right)\right), M_{2} \in \operatorname{cone}\left(\mathcal{D}\left(\mathcal{Q}_{3}\right)\right), \lambda_{1,2,3} \in R}\left(-r_{1} E\left[M_{1}\right]-r_{2} E\left[M_{2}\right]\right. \\
& \left.-\lambda_{1} \pi_{1}--\lambda_{2} \pi_{2}-\lambda_{3}-\omega^{T}\left(E\left[U Y_{1}\right]+E\left[M_{1} Y_{2}\right]+E\left[M_{2} x\right]-\lambda_{1} E\left[Y_{1}\right]-\lambda_{2} E\left[Y_{2}\right]-\lambda_{3} 1\right)\right) \\
& p=\inf _{\omega \in R^{n} U \in \mathcal{D}\left(\mathcal{Q}_{1}\right), M_{1} \in \operatorname{cone}\left(\mathcal{D}\left(\mathcal{Q}_{2}\right)\right), M_{1} \in \operatorname{cone}\left(\mathcal{D}\left(\mathcal{Q}_{3}\right)\right), \lambda_{1,2,3} \in R}\left(-r_{1} E\left[M_{1}\right]-r_{2} E\left[M_{2}\right]\right. \\
& \left.l k-\lambda_{1} \pi_{1}-\lambda_{2} \pi_{2}-\lambda_{3}+E\left[-U \omega^{T} Y_{1}\right]+E\left[-M_{1} \omega^{T} Y_{2}\right]+E\left[-M_{2} \omega^{T} x\right]+\lambda_{1} E\left[\omega^{T} Y_{1}\right]+\lambda_{2} E\left[\omega^{T} Y_{2}\right]+\lambda_{3} \omega^{T} 1\right)
\end{aligned}
$$

also ([10], corollary 4.8) [10] ensures that there exist an optimal Lagrange multiplier $\omega^{*} \in R^{n}$. By the first-order condition with respect to $U=U^{*}$, thus we have that

$$
0 \in-\left(\omega^{*}\right)^{T} Y_{1}-\mathcal{N}_{\mathcal{D}\left(\mathrm{Q}_{1}\right)}\left(U^{*}\right)
$$

this means

$$
E\left[-U^{*}\left(\omega^{*}\right)^{T} Y_{1}\right] \geq E\left[-U^{\prime}\left(\omega^{*}\right)^{T} Y_{1}\right]
$$

for every $U^{\prime} \in \mathcal{D}\left(\mathcal{Q}_{1}\right)$, that is

$$
\rho_{1}\left(\left(\omega^{*}\right)^{T} Y_{1}\right)=E\left[-U^{*}\left(\omega^{*}\right)^{T} Y_{1}\right]
$$

We conclude that $U^{*} \in \psi\left(\omega^{*}\right)$ where $\psi\left(\omega^{*}\right)$ defines as $\psi_{j}\left(\omega^{*}\right):=\operatorname{argmax}_{V \in \mathcal{D}(\mathcal{Q})} E\left[-V Y_{1}^{T} \omega\right]$, see (Akturk, Ararat 2019, Lemma 3.4),

$$
\begin{equation*}
E\left[-U^{*} x\right] \in \partial g_{1}\left(\omega^{*}\right) \tag{4.10}
\end{equation*}
$$

and the same way, the first order condition with respect to $M_{i}=M_{i}^{*}$, for $i=1,1$ yields

$$
E\left[-M_{1}^{*}\left(\left(\omega^{*}\right)^{T} Y_{2}+r_{1}\right)\right] \geq E\left[-M_{1^{\prime}}\left(\left(\omega^{*}\right)^{T} Y_{2}+r_{1}\right)\right]
$$

and

$$
E\left[-M_{2}^{*}\left(\left(\omega^{*}\right)^{T} x+r_{2}\right)\right] \geq E\left[-M_{2^{\prime}}\left(\left(\omega^{*}\right)^{T} x+r_{2}\right)\right]
$$

for every $M_{1^{\prime}} \in \operatorname{cone}\left(\mathcal{D}_{2}\right)$ and $M_{2^{\prime}} \in \operatorname{cone}\left(\mathcal{D}_{3}\right)$, that is

$$
\begin{equation*}
E\left[-M_{1}^{*}\left(\left(\omega^{*}\right)^{T} Y_{2}+r_{1}\right)\right]=\max _{M_{1^{\prime}} \in \operatorname{cone(\mathcal {D}(\mathcal {Q}_{2})}} E\left[-M_{1^{\prime}}\left(\left(\omega^{*}\right)^{T} Y_{2}+r_{1}\right)\right] \tag{4.11}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left[-M_{2}^{*}\left(\left(\omega^{*}\right)^{T} x+r_{2}\right)\right]=\max _{M_{2^{2}} \in \operatorname{cone}\left(\mathcal{D}()_{3}\right)} E\left[-M_{2^{\prime}}\left(\left(\omega^{*}\right)^{T} x+r_{2}\right)\right] \tag{4.12}
\end{equation*}
$$

Since $\operatorname{cone}\left(\mathcal{D}_{2}\right)$ is a cone, the quantity $\sup _{M_{1^{\prime}} \in \operatorname{cone}\left(\mathcal{D}\left(\mathcal{Q}_{2}\right)\right.} E\left[-M_{\mathrm{I}^{\prime}}\left(\left(\omega^{*}\right)^{T} Y_{2}+r_{1}\right)\right] \quad$ can \quad either take the value 0 or $+\infty$, and $\operatorname{cone}\left(\mathcal{D}_{3}\right)$ is a cone, the quantity $\sup _{M_{2^{\prime}} \in \operatorname{cone(\mathcal {D}()_{3})}} E\left[-M_{2^{\prime}}\left(\left(\omega^{*}\right)^{T} x+r_{2}\right)\right]$ can either take the value 0 or $+\infty$, Since $E\left[-M_{1^{\prime}}\left(\left(\omega^{*}\right)^{T} Y_{2}+r_{1}\right)\right]$ and $E\left[-M_{2^{\prime}}\left(\left(\omega^{*}\right)^{T} x+r_{2}\right)\right]$ are a finite number, both sides of (4.11) and (4.12) must equal to
zero, thus we obtain

$$
\begin{equation*}
0=\max _{M_{1^{\prime}} \in \operatorname{cone(\mathcal {D}(\mathcal {Q}_{2})}} E\left[-M_{1^{\prime}}\left(\left(\omega^{*}\right)^{T} Y_{2}+r_{1}\right)\right]=\left(\sup _{\lambda_{1^{\prime}} \geq 0} \lambda_{1^{\prime}}\right)\left(\max _{V_{1^{\prime}} \in \mathcal{D}\left(Q_{2}\right)} E\left[-V_{1}^{\prime}\left(\left(\omega^{*}\right)^{T} Y_{2}+r_{1}\right)\right]\right) \tag{4.13}
\end{equation*}
$$

$\left.=+\infty . \rho_{2}\left(\left(\omega^{*}\right)^{T} Y_{2}+r_{1}\right)=+\infty\left(\rho_{2}\left(\omega^{*}\right)^{T} Y_{2}\right)-r_{1}\right)$
as well

$$
\begin{equation*}
0=\max _{M_{2^{\prime}} \in \operatorname{cone}\left(\mathcal{D}(\mathcal{Q})_{3}\right)} E\left[-M_{2^{\prime}}\left(\left(\omega^{*}\right)^{T} x+r_{2}\right)\right]=\left(\sup _{\lambda_{2}^{\prime} \geq 0} \lambda_{2^{\prime}}\right)\left(\max _{V_{2^{\prime}} \in \mathcal{D}\left(\mathcal{Q}_{3}\right)} E\left[-V_{2}^{\prime}\left(\left(\omega^{*}\right)^{T} x+r_{2}\right)\right]\right) \tag{4.14}
\end{equation*}
$$

$$
\left.=+\infty \cdot \rho_{3}\left(\left(\omega^{*}\right)^{T} x+r_{2}\right)=+\infty\left(\rho_{3}\left(\omega^{*}\right)^{T} x\right)-r_{2}\right)
$$

Moreover, we have optimality $\left.\rho_{2}\left(\omega^{*}\right)^{T} Y_{2}\right)=r_{1} \quad$ and $\left.\rho_{3}\left(\omega^{*}\right)^{T} x\right)=r_{2}$

Let $v_{i}^{*}=E\left[M_{i}^{*}\right]$, for $i=1,2$, and suppose at the first $v_{i}^{*}>0$, for $i=1,2$ and let $V_{1}^{*}:=\frac{M_{1}^{*}}{v_{1}^{*}} \in \mathcal{D}\left(\mathcal{Q}_{2}\right)$ and

$$
V_{2}^{*}:=\frac{M_{1}^{*}}{v_{1}^{*}} \in \mathcal{D}\left(\mathcal{Q}_{3}\right) \text { Then, }
$$

$$
E\left[-M_{1}^{*}\left(\left(\omega^{*}\right)^{T} Y_{2}+r_{1}\right)\right]=v_{1}^{*} E\left[\left(\omega^{*}\right)^{T} Y_{2}+r_{1}\right]=0
$$

$$
E\left[-M_{2}^{*}\left(\left(\omega^{*}\right)^{T} x+r_{2}\right)\right]=v_{2}^{*} E\left[\left(\omega^{*}\right)^{T} x+r_{2}\right]=0
$$

so that, $E\left[-V_{1}^{*}\left(\omega^{*}\right)^{T} Y_{2}\right]=r_{1}, E\left[-V_{2}^{*}\left(\omega^{*}\right)^{T} x\right]=r_{2}$. Hence

$$
\left.E\left[-V_{1}^{*}\left(\omega^{*}\right)^{T} Y_{2}\right]=r=\rho_{2}\left(\omega^{*}\right)^{T} Y_{2}\right)=\max _{V_{1^{\prime}} \in \mathcal{D}\left(\mathcal{Q}_{2}\right)} E\left[-V_{1}^{\prime}\left(\omega^{*}\right)^{T} Y_{2}\right]
$$

that is $V_{1}^{*} \in \psi_{2}\left(\omega^{*}\right)$,

$$
\left.E\left[-V_{2}^{*}\left(\omega^{*}\right)^{T} x\right]=r=\rho_{2}\left(\omega^{*}\right)^{T} x\right)=\max _{V_{2^{\prime}} \in \mathcal{D}\left(\mathcal{Q}_{3}\right)} E\left[-V_{2}^{\prime}\left(\omega^{*}\right)^{T} x\right]
$$

that is $V_{2}^{*} \in \psi_{3}\left(\omega^{*}\right)$. Actually

$$
\begin{aligned}
& E\left[-V_{1}^{*} Y_{2}\right] \in \partial g_{2}\left(\omega^{*}\right) \\
& E\left[-V_{2}^{*} x\right] \in \partial g_{3}\left(\omega^{*}\right)
\end{aligned}
$$

Furthermore, suppose that $v_{i}^{*}=0$, for $i=1,2$ that is $M_{i}^{*}=0$ for $i=1,2 \quad p-$ almost sure. Let us pack some $V_{2}^{*} \in \psi_{2}\left(\omega^{*}\right) \quad, V_{3}^{*} \in \psi_{3}\left(\omega^{*}\right) \quad, \quad$ arbitrarily. Since $\quad \psi_{2}\left(\omega^{*}\right) \neq \phi$, $\psi_{3}\left(\omega^{*}\right) \neq \phi$, because ρ_{2}, ρ_{3} are assumed to be continuous from below. Thus, in both cases, we may write $M_{i}^{*}=v_{i}^{*} V_{i}^{*}$, for $i=1,2$, and we can write

$$
\begin{equation*}
E\left[-M_{1}^{*} Y_{2}\right]=v_{1}^{*} E\left[-V_{1}^{*} Y_{2}\right] \in v_{1}^{*} \partial g_{2}\left(\omega^{*}\right) \tag{4.15}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left[-M_{2}^{*} x\right]=v_{2}^{*} E\left[-V_{2}^{*} x\right] \in v_{2}^{*} \partial g_{3}\left(\omega^{*}\right) \tag{4.16}
\end{equation*}
$$

Now, from the feasibility of $\left(U^{*}, M_{1}^{*}, M_{2}^{*}, \lambda_{1}^{*}, \lambda_{2}^{*}, \lambda_{3}^{*}\right)$ for dual problem (4.2), we have
$E\left[-U^{*} x\right]+E\left[-M_{1}^{*} Y_{2}\right]+E\left[-M_{3}^{*} x\right]+\lambda_{1}^{*} \pi_{1}+\lambda_{2}^{*} \pi_{2}+\lambda_{3}^{*} 1=E\left[-U^{*} x\right]+\nu_{1}^{*} E\left[-V_{1}^{*} Y_{2}\right]+v_{1}^{*} E\left[-V_{2}^{*} x\right]+\lambda_{1}^{*} \pi_{1}+\lambda_{1}^{*} \pi_{1}+\lambda_{3}^{*} 1=0$
(4.17)

Consequently, from (4.10),(4.15), (4.16), and (4.17), we obtain

$$
0 \in \partial g_{1}\left(\omega^{*}\right)+v_{1}^{*} \partial g_{2}\left(\omega^{*}\right)+v_{2}^{*} \partial g_{3}\left(\omega^{*}\right)+\lambda_{1}^{*} \pi_{1}+\lambda_{2}^{*} \pi_{2}+\lambda_{3}^{*} 1
$$

Finally, according to the first order condition with respect to $\lambda_{1,2,3}=\lambda_{1,2,3}^{*}$, respectively, we got
$1^{T} \omega^{*}=1$
where $\omega^{*} \in \mathcal{W}$.
We conclude that ω^{*} is the optimal solution for problem (4.1) or (4.8) so from the condition of Karush-Kuhn-

Tucker condition for a problem and from [9] $\omega=\omega^{*}$ is the same optimal solution for problems (3.1) and (3.3), respectively.
Moreover, once we have the optimal ω^{*}, we get $X=\omega^{*} x$, we can find the division Y_{1} and Y_{2} where $X=Y_{1}+Y_{2}$, see [5].

Examples and numerical results

We choose the risk measure as a coherent risk measure. In the following examples, we show how to write dual representations for each risk preference for each agent (investor). In the first example, two investors will choose risk measure as the negative expected value in the second example; in the second example investors choose average-value at-risk and in the third example one of the investors chooses negative risk and others will choose average-value-at-risk.

Example 1: see(Two-CVAR)

Let $p=1$ and take $\rho\left(Y_{1}\right)=E\left[-Y_{1}\right]$ for every $Y_{1} \in L^{1}$, it is easy to check that ρ satisfies the properties for the coherent risk measure above. while the dual representation for each investor (agents) risk preferences, we simply have $\mathcal{Q}_{1}=\{\mathcal{P}\}$ so that $\mathcal{D}_{1}\left(\mathcal{Q}_{1}\right)=\{1\} \subset L^{\infty}$. While second investors will be of the form $\rho\left(Y_{2}\right)=E\left[-Y_{2}\right]$ for every $Y_{2} \in L^{2}$, It is easy to check that ρ satisfies properties for the coherent risk measure above. While the dual representation (2.1) for each investor (agents), we simply have $\mathcal{Q}_{2}=\{\mathcal{P}\}$ so that $\mathcal{D}_{2}\left(\mathcal{Q}_{2}\right)=\{1\} \subset L^{\infty}$

Example 2: (average-at-risk) Let $\phi \in(0,1)$ be a probability level. The average value-at-risk at Level ϕ for the first investor
$Y_{1} \in L^{1}$ is defined as
$A V @ R_{\phi}\left(Y_{1}\right):=\frac{1}{\phi} \int_{0}^{\phi} V @ R_{u}\left(Y_{1}\right) d u$

It is well-known that $A V @ R_{\phi}$ is a law-invariant coherent risk measure L^{1}. In the dual representation in (3.1), we may take $\mathcal{Q}_{1}=\left\{Q \in \mathcal{M}_{1}(\mathcal{P}) \left\lvert\, \mathcal{P}\left\{\frac{Q}{\mathcal{P}} \leq \frac{1}{\phi}\right\}=1\right.\right\}$ so that

$$
\mathcal{D}_{1}\left(\mathcal{Q}_{1}\right)=\left\{V \in L^{\infty} \left\lvert\, \mathcal{P}\left\{0 \leq V \leq \frac{1}{\phi}\right\}=1\right.\right\}
$$

While for second investor will be the same form

$$
A V @ R_{\phi}\left(Y_{2}\right):=\frac{1}{\phi} \int_{0}^{\phi} V @ R_{u}\left(Y_{2}\right) d u
$$

It is well-known that $A V @ R_{\phi}$ is a law-invariant coherent risk measure L^{1}. In the dual representation in (3.1), we may take $\mathcal{Q}_{1}=\left\{Q \in \mathcal{M}_{1}(\mathcal{P}) \left\lvert\, \mathcal{P}\left\{\frac{Q}{\mathcal{P}} \leq \frac{1}{\phi}\right\}=1\right.\right\}$ so that

$$
\mathcal{D}_{2}\left(\mathcal{Q}_{2}\right)=\left\{V \in L^{\infty} \left\lvert\, \mathcal{P}\left\{0 \leq V \leq \frac{1}{\phi}\right\}=1\right.\right\}
$$

Example 3: The first investor chooses a negative Expected value and the second investor will choose Average value-atrisk. Let $p=1$ and take $\rho\left(Y_{1}\right)=E\left[-Y_{1}\right]$ for every $Y_{1} \in L^{1}$, it is easy to check that ρ satisfies properties for the coherent risk measure above while the dual representation (3.1) for each investor (agents) simply has $\mathcal{Q}_{1}=\{\mathcal{P}\}$ so that $\mathcal{D}_{1}\left(\mathcal{Q}_{1}\right)=\{1\} \subset L^{\infty}$
. Also, the measure for the second investor will be as follows:

$$
A V @ R_{\phi}\left(Y_{2}\right):=\frac{1}{\phi} \int_{0}^{\phi} V @ R_{u}\left(Y_{2}\right) d u
$$

It is well-known that $A V @ R_{\phi}$ is a law-invariant coherent risk measure L^{1}. In the dual representation in (3.1), we may take $\mathcal{Q}_{2}=\left\{Q \in \mathcal{M}_{1}(\mathcal{P}) \left\lvert\, \mathcal{P}\left\{\frac{Q}{\mathcal{P}} \leq \frac{1}{\phi}\right\}=1\right.\right\}$ so that

$$
\mathcal{D}_{2}\left(\mathcal{Q}_{2}\right)=\left\{V \in L^{\infty} \left\lvert\, \mathcal{P}\left\{0 \leq V \leq \frac{1}{\phi}\right\}=1\right.\right\}
$$

You can see some literature review for coherent risk measure and how is formulated in my first draft of this paper and references in (Follmeire).

Numerical experiment

For the financial market model, Let us assume that one risk-free asset and n a risky asset. Also, the initial endowment of an agent $i \in I=\{1,2, \ldots ., m\}$ is given by a portfolio $\bar{\omega} \in R^{n+1}$ so that the discount payoff at the time $t=1$ is

$$
Y_{i}=\frac{\bar{\omega} \cdot \bar{S}}{1+r}, \quad i \in I=\{1,2, \ldots ., m\}
$$

the market portfolio is given by $X=\frac{\bar{\omega} \cdot \bar{S}}{1+r}$, with $\bar{\omega}:=\sum_{i \in I} \bar{\omega}_{i}=\left(\omega^{0}, \omega\right)$, and $\bar{S}=\left(S^{0}, S\right)$ is asset Price. Hence,
in our problem for cooperative investment. Just we need to replace each Y_{i} and X in the equilibrium allocation for each investor $Y_{i}^{*}=I^{+}\left(c_{i} \varphi^{*}\right)$ as follows:

Algorithm in real Market

Step 1: Finding derivative of \mathcal{U} in (3.7) for each investor (agent $i=1,2$) in terms of y_{i}, respectively.

Step 2: By solving cooperative investment (3.3) we get the value of ω.

Step 3: The value of the derivative in step 1 and the value ω in step 3 plug into the system (3.9) in order to get the equilibrium price P.

Step 4: Plug the value of equilibrium price P in equilibrium allocation Y_{i}^{*} where we can find it as the positive inverse of the derivative of \mathcal{U}_{i} each investor(agent $i=1,2$ at an equilibrium price that we find by solving a feasible problem (3.9). Note that, solving a problem (3.3) in CVX-MATLAB we write inv-pose for derivative of \mathcal{U}_{i} to write Y_{i} in the program.

Real Experiment: Solving Individual Investment (IV) (3.1) and cooperative investment (CI) (3.3) with one risk-free $=0.01$ and 3 risky assets (APA, BA, BK) weekly historical data downloading from yahoo finance S \& P 500 (January 2022 to May 2022) where $r_{1}=0.0025, r_{2}=0.001$ and $\pi_{1}=0.025, \pi_{2}=0.05$. We got the result as follows: note that we wrote the coherent risk measure as the negative risk which is an expected shortfall at

Risk measure the optimal value for Cl the optimal value for IV $(\mathrm{CIIV}) \times 100$

$\rho_{1}(y)$	+0.0014842	+0.0445431	-0.043%
$\rho_{2}(y)$	+0.00110	+0.0253	-0.024%

We can be changing the value or r_{1} and fixed the value $r_{2}, \pi_{1}, \pi 2$ in order to get the whole efficient frontier. then solve feasibility problem (3.9) to get equilibrium price then equilibrium allocation as follows. $y_{1}^{*}=0.0014822, Y_{2}^{*}=0.001002$ which is still better than the optimal value for individual investors as shown [1].

Conclusion

In this paper, we reformulate cooperative investment risk by writing a dual representation for each risk preference (coherent risk measure) for each agent (investor). First, finding an analytic solution for the problem for both cases individual and cooperative investment problems which are represented in theorems 1 and 2. Second, numerical experiments support our result by getting better investment in the case of cooperative investment. Hence, we conclude that the cooperative investment still has better results since sharing creates instruments that
on the one hand, satisfy individual risk preferences but, on the other hand, are not replicable in an incomplete market, so each agent is strictly better in participating in cooperative investment than investing alone.

This research can be extended in at least two directions. First, solving cooperative investment with inflation effect in case of initial endowment exist and without. The second is a case study of applying cooperative investment in Saudi Arabia Financial market.

References

1. Akturk T, Ararat C. Portfolio optimization with two coherent risk measures. Journal of Global optimization. 2020.
2. Grechuk $B, Z a b a r a n k i n ~ A . ~ O p t i m a l ~ r i s k ~ s h a r i n g ~ w i t h ~ g e n e r a l ~ d e v i a t i o n ~ m e a s u r e . ~$ Annual Operation Research. 2013; 200(1): 9-21
3. Grechuk B, Molyoboha B, Zabarankin AM. Cooperative games with general deviation measures. Math Finance. 2015.
4. Almualim AA. Dynamic Cooperative Investment With GARCH Approch. In Proceedings of Birmingham Conference in Birmingham. 2016.
5. Grechuk B, Molyoboha B, Zabarankin A. Synergy effect of cooperative investemnt.annual operation research. 2017. 1-3.
6. Guchhait R, Sarkar B. Economic and environmental assessment of an unreliable supply chain managment Rairo operation research. 2021; 55(5): 3153-3170.
7. Sarkar A, Guchhait R, Sarkar B. Application of the Artificial Neural Network with Multithreading Within an Inventory Model Under Uncertainty and InflationInternational Journal of Fuzzy Systems. 2022; 24:2318-2332.
8. Abdikerimova S, Boonen T, Feng R. Multi-period Peer-to-Peer Risk Sharing SSRN. G. 2022; 22.
9. Zalinescu C. Convex analysis in general vector space,World Scientific. 2002.
10. Borwein A, Lewis S. Partially finite convex programming, part I: Quasi relative interiors and duality theory. Mathematical programming. 1992; 57(1): 15-48.
11. Sion M. On general minimax theoremsPacific Journal of Mathematics. 1985. 8(1):171-176.
12. Almualim AA. Cooperative Investment in a Multi-Period Portfolio Optimisation. In Proceedings of the Eighth Saudi Students Conference in London. 2015; 8 : 599-609. 100.

Discover a bigger Impact and Visibility of your article publication with Peertechz Publications

```
Highlights
* Signatory publisher of ORCID
* Signatory Publisher of DORA (San Francisco Declaration on Research Assessment)
* Articles archived in worlds' renowned service providers such as Portico, CNKI, AGRIS,
    TDNet, Base (Bielefeld University Library), CrossRef, Scilit, J-Gate etc
* Journals indexed in ICMJE, SHERPA/ROMEO, Google Scholar etc.
* OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting)
* Dedicated Editorial Board for every journal
* Accurate and rapid peer-review process
* Increased citations of published articles through promotions
* Reduced timeline for article publication
Submit your articles and experience a new surge in publication services
(https://www.peertechz.com/submission)
```

