A. Appendix: numerical approaches

[bookmark: GrindEQpgref6489907d10]Matlab code and Nelder-Mead method

[image: Texto, Aplicación

Descripción generada automáticamente]What follows is the Matlab code to minimize :

Matlab allows the implementation of different optimization functions, including gradient-based and gradient-free methods. The code above uses a gradient-free simplex method called Nelder-Mead. This method is particularly suitable for functions such as the one being analyzed here, which has a very chaotic gradient. the Nelder-Mead method (also known as the downhill simplex method, amoeba method, or polytope method), is a numerical method used to find extremes of a real function in a multidimensional space. The method uses simplices and approximates a local optimum of a problem. It does so by maintaining a set of test points arranged as a simplex, and then extrapolates the behavior of the objective function measured at each test point in order to find a new test point and replace one of the old test points with the new one. As such, it is a direct search method and is often applied to nonlinear optimization problems for which derivatives may not be known.

[bookmark: GrindEQpgref6489907d11]6.2 Wolfram Alpha calculations

The numerical calculations done with Wolfram Alpha were based on solving a system of two equations, where we provide the system with the following constraints:

		(32)

Wolfram provides flexible tools for numerical root finding using a variety of algorithms, such as Newton's method (which is gradient-based) as well as the bisection method (which is gradient-free). In Newton's method, the idea is to start with an initial guess, then approximate the function by its tangent line, and finally compute the intercept of this tangent line with the axis. This point will typically be a better approximation to the original function's root than the first guess, and the method can be iterated. In addition, the bisection method applies to any continuous function for which one knows two values with opposite signs. The method consists of repeatedly bisecting the interval defined by these values, and then selecting the subinterval in which the function changes sign, therefore pinpointing the root. Both methods, Newton and bisection, use as a stopping criterion that the difference between the computed points in two consecutive iterations is sufficiently small, i.e., |xk+1 − xk| < ε, with xk the point at step k (and similarly for xk+1), and ε some error tolerance. In some cases, the stopping criteria can be applied also to the relative difference, i.e., |(xk+1 − xk)/xk| < ε.

image1.png
% Computes the minimus of (abs(zeta(s))-+1) with gradient-free Nelde
% sizplex method. It takes many possible initial conditions for the
% optimization, and evaluates the best solution over all of thes

fead

clear a1l
xe 1
for a= 0:0.1:1 % real part
vt
Tor b= 0:0.1:80 % inaginary par
fun = 0(g)abs (zeta(q(1) + 11q(2))-1); % replace "-1* by "41" for the sacond
case. For the functional fora (ao nuserical difference), use instead fun =
0(g) (abs ((2°(q(1) + 114g(2)))*(pi~((g(1) + 11+g@))-D)*sin(pis(q(1) +
1149(2))/2) sgamma(i-(q(1) + 114q(D))+zeta(i-(q(1) + 114g(2)+1)
40 = [a,b]; % initial condition of optimization
[q,£val] = fminsearch(fun,q0); % Nelder-Nead simplex method
mintun(x,y) = fval;
inxx() = q(1)
iayy(y) = 4(2);
dat = {ninxx minyy minfun);
save("Minus mat’, 'dat’) % save data
[a b q(1) o) va1] % data on screen
i
end
x =01
end

figure; mesh(minfun) % Plots distribution of found minima.

mintmun = min(ain(atntun));
[rr, 55]=1 ind (ninfun=sminimun) ;
[nincx(rr), minyy(ss), minimun) % Lowest-found minina.

image2.wmf
|()1|

s

z

m

oleObject1.bin

image3.wmf
R(())=1, I(())=0.

exyimxyi

zz

++

m

oleObject2.bin

