Mathematical analysis of the new <em>α</em> - difference operator with an application to prey-predator model with harvesting. Quadratic invariant
ISSN: 2689-7636
Annals of Mathematics and Physics
Research Article       Open Access      Peer-Reviewed

Mathematical analysis of the new α - difference operator with an application to prey-predator model with harvesting. Quadratic invariant

HI Abdel-Gawad1* and Ahmed H Abdel-Gawad2

1Mathematics Department, Faculty of Science Cairo University, Giza, Egypt
2Computer Engineering Department, Faculty of Engineering Cairo University, Giza, Egypt
*Corresponding authors: HI Abdel-Gawad, Mathematics Department, Faculty of Science Cairo University, Giza, Egypt, E-mail: hamdyig@yahoo.com; hamdy@sci.cu.edu.eg
Received: 07 February, 2024 | Accepted: 19 February, 2024 | Published: 20 February, 2024
Keywords: New difference equation; Mathematical analysis; Dynamic systems; Prey-predator model

Cite this as

Abdel-Gawad HI, Abdel-Gawad AH (2024) Mathematical analysis of the new α - difference operator with an application to prey-predator model with harvesting. Quadratic invariant. Ann Math Phys 7(1): 054-063. DOI: 10.17352/amp.000106

Copyright Licence

© 2024 Abdel-Gawad HI, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

In this research paper, we introduce a novel mathematical operator known as the alpha-difference operator (α-DO) and its corresponding integral. We establish the foundational theorems related to this operator and demonstrate its applications in both linear and nonlinear dynamical equations. A key focus of our study is the application of α-DO in the context of the prey-predator model with harvesting. In the linear scenario, we derive exact solutions for the model. For the nonlinear case, we develop an iterative scheme to obtain approximate solutions. We also prove a theorem that guarantees the convergence of this scheme. We conduct a thorough investigation of the dynamical behavior of the system as the parameter varies. This is visualized through graphical representations. Our findings reveal that the system exhibits local memory, which significantly influences the evolution of the system. We observe that the α-DO is particularly effective in describing dynamical systems that undergo a change in behavior at a specific characteristic time. This is especially relevant to the system under consideration. A prime example of such a system is the Exposed-Infected-Recovery System (EIRS). Lastly, we construct the Hamiltonian function using a quadratic invariant. This provides further insights into the energy conservation and stability properties of the system. Our research opens up new insight for the application of the α-DO in various fields of science and engineering.

1. Introduction

Different prototypes of calculus, besides the classical ones, are well established. Among them, are q-calculus, fractional, proportional derivative, and variational calculus. By proportional derivatives, we mean; conformable, Beta, fractal derivatives, and M-truncated derivatives [1-3]. We mention, also, q -, fractional [4] and q - variational calculus [5]. These calculuss were employed in many trends of research in applied mathematics and in the applied sciences. They were the objective of numerous researchers as far as they are the topics of a variety of scientific journals. Many non-classical calculuss are well established in the literature. Basic and advanced analysis and also applications were approached. The q - difference (q-D) operator was introduced in [6]. In this issue, the existence of a fundamental set of n-linearly independent solutions to linear q-difference equation of order was proved in [7]. Meromorphic solutions of -difference equations (q-DE) were studied in [8,9], due to the apparent role of the existence of such solutions of finite order for the integrability of discrete difference equations. The q-DE has applications in quantum calculus (5) and in thermodynamics for entropy [10]. Also q -dynamic equation was introduced in [11-14] with applications in biology. In [9], the well-known logistic equation was studied in the quantum calculus analogue. Different forms of Fractional Derivatives (FD) have been proposed in the literature. Riemann-Liouville (RL), Caputo [15], and Caputo-Fabrizio [15-17].

A definition of the general fractional time derivative (FTD) will be defined later on, where the kernel may be chosen singular or regular. Indeed, when studying the dynamic evolution of a system with FTD, means that we are concerned with determining the effect of the distributed delay (or recent memory) on the system behavior. This may be argued to that a delay “t-t1” that exists in the kernel. Fractional systems are used to model phenomena that exhibit anomalous or complex behaviors. This holds in systems with long memory or with hereditary effects. Fractional nonlinear PDEs were used in many areas of science, physics, biology, chemistry, and engineering sciences (Electronics and telecommunications) [18-21]. In physics, analysis, and modeling of diffusion phenomenon were currently considered. In biology and biophysics, the electrical conductance of biological systems, fractional modeling of neurons, muscle modeling, and lung modeling were studied. Fractional nonlinear dynamical systems NLDS have been studied by many researchers [22-35]. Very recently, a relevant work unified, approximately, the different forms, by reducing them to proportional derivatives [36]. The dynamics of prey-predator harvesting are currently studied in the literature. A prey–predator-type fishery model with Beddington–DeAngelis functional response and selective harvesting of predator species was considered in [37]. A prey-predator model incorporating prey-refuge and independent harvesting in either species was proposed with controlling harvesting to break the cyclic behavior of the system [38].

Bioeconomic harvesting of a prey-predator fishery in which both the species are infected by some toxicants was considered [39]. In [40], a fractional-order prey-predator model was introduced and the dynamical behavior of the system was investigated via local stability. The study of one prey and one predator harvesting model with imprecise biological parameters was presented [41]. Further relevant works were carried out [42-47].

Here, a new FDO is introduced that reveals the memory compression effect, which is relevant in dynamical systems and in computer sciences. Thus, we are led to clarify the different memory descriptions. To this issue, they can classified as (i) memory transport (time delay), (ii) memory compression, and (iii) recent or ancient- memory. Cases (ii) and (iii) are relevant in systems with time-fractional derivatives.

This paper is organized as follows.

In Sec. 2 basic definitions and memory index are presented. Sec. 3 is concerned with introducing the NDO. The ND integral operator is proposed in Sec. 4. Applications are considered in Sec. 5 and the quadratic invariant is presented in Sec. 6.. Sec. 7 is devoted to conclusions.

2. Basic definitions and memory index

2.1 Basic definitions

Definition 1: The q-difference is defined by [6]

D q f(t)={ f(qt)f(t) t(q1) , f(t)f(qt) t(1q) , f ' (t), q>1, q<1, q=1.         (1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGebGcdaWgaaWcbaqcLbsacaWGXbaaleqaaKqzGeGaamOzaiaaiIcacaWG0bGaaGykaiaai2dakmaaceaabaqcLbsafaqabeqacaaakeaajugibuaabeqadeaaaOqaamaalaaabaqcLbsacaWGMbGaaGikaiaadghacaWG0bGaaGykaiabgkHiTiaadAgacaaIOaGaamiDaiaaiMcaaOqaaKqzGeGaamiDaiaaiIcacaWGXbGaeyOeI0IaaGymaiaaiMcaaaGaaGilaaGcbaWaaSaaaeaajugibiaadAgacaaIOaGaamiDaiaaiMcacqGHsislcaWGMbGaaGikaiaadghacaWG0bGaaGykaaGcbaqcLbsacaWG0bGaaGikaiaaigdacqGHsislcaWGXbGaaGykaaaacaaISaaakeaajugibiaadAgakmaaCaaaleqabaqcLbsacaWGNaaaaiaaiIcacaWG0bGaaGykaiaaiYcaaaaakeaajugibuaabeqadeaaaOqaaKqzGeGaamyCaiaai6dacaaIXaGaaGilaaGcbaqcLbsacaWGXbGaaGipaiaaigdacaaISaaakeaajugibiaadghacaaI9aGaaGymaiaai6caaaaaaaGccaGL7baacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaaeykaaaa@7A31@

Definition 2 (new): The definition of the FTD in the Caputo- version, with a general (kernel regular or singular), is,

S 0 D t α f(t)=A(α) 0 t K(t t 1 ,α) f ' ( t 1 )d t 1 ,0<α<1,      (2) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeGabaaakeaajugibiaadofaaOqaaKqzGeGaaGimaaaacaWGebGcdaqhaaWcbaqcLbsacaWG0baaleaajugibiabeg7aHbaacaWGMbGaaGikaiaadshacaaIPaGaaGypaiaadgeacaaIOaGaeqySdeMaaGykaOWaa8qmaeqaleaajugibiaaicdaaSqaaKqzGeGaamiDaaGaey4kIipacaWGlbGaaGikaiaadshacqGHsislcaWG0bGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGilaiabeg7aHjaaiMcacaWGMbGcdaahaaWcbeqaaKqzGeGaam4jaaaacaaIOaGaamiDaOWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaaiMcacaWGKbGaamiDaOWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaaiYcacaaIWaGaaGipaiabeg7aHjaaiYdacaaIXaGaaGilaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGYaGaaeykaaaa@6D40@

Where fϵ C ,1,α ( + ),  C ,1,α ( + )={u,uϵ C 1 ( + ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMbWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8caWGdbGcdaahaaWcbeqaaKqzGeGaaGilaiaaigdacaaISaGaeqySdegaaiaaiIcatuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+1risPWaaWbaaSqabeaajugibiabgUcaRaaacaaIPaGaaiilaiaabccacaWGdbGcdaahaaWcbeqaaKqzGeGaaGilaiaaigdacaaISaGaeqySdegaaiaaiIcacqGFDeIukmaaCaaaleqabaqcLbsacqGHRaWkaaGaaGykaiaai2dacaaI7bGaamyDaiaaiYcacaaMc8UaamyDaiab=v=aYlaadoeakmaaCaaaleqabaqcLbsacaaIXaaaaiaaiIcacqGFDeIukmaaCaaaleqabaqcLbsacqGHRaWkaaGaaGykaiaacYcaaaa@72E5@ | 0 t K(t t 1 ,α) u ' ( t 1 )d t 1 |<K}. A(α) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGG8bGcdaWdXaqabSqaaKqzGeGaaGimaaWcbaqcLbsacaWG0baacqGHRiI8aiaadUeacaaIOaGaamiDaiabgkHiTiaadshakmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaISaGaeqySdeMaaGykaiaadwhakmaaCaaaleqabaqcLbsacaWGNaaaaiaaiIcacaWG0bGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGykaiaadsgacaWG0bGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaiiFaiaaiYdacaWGlbGaaGyFaiaac6cacaqGGaGaamyqaiaaiIcacqaHXoqycaaIPaaaaa@5BB5@ . can not be defined in general. It may be considered as a normalization factor to fit with a particular Def. of a fractional derivative.

To distinguish between these different memories that arise in dynamical systems, we define the memory index function relative to a dynamical quantity u(f(t)), t is the time variable.

A memory index function is defined as follows [11].

M ind (u(f(t)))=Arg(u(f(t))t=f(t)t       (3) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnbGcdaWgaaWcbaqcLbsacaWGPbGaamOBaiaadsgaaSqabaqcLbsacaaIOaGaamyDaiaaiIcacaWGMbGaaGikaiaadshacaaIPaGaaGykaiaaiMcacaaI9aGaamyqaiaadkhacaWGNbGaaGikaiaadwhacaaIOaGaamOzaiaaiIcacaWG0bGaaGykaiaaiMcacqGHsislcaWG0bGaaGypaiaadAgacaaIOaGaamiDaiaaiMcacqGHsislcaWG0bGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeykaaaa@5CC3@

We mention that when f(t)=t then Mind(u(f(t))) = 0 and when f(t)=t+1 then Mind(u(f(t))) = 1.

Definition 3: A system is said to be with memory if Mind(u(f(t))) < 0.

Examples
  1. When  f(t)=tτ,  M ind (u(f(t)))=τ<0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMbGaaGikaiaadshacaaIPaGaaGypaiaadshacqGHsislcqaHepaDcaGGSaGaaeiiaiaad2eakmaaBaaaleaajugibiaadMgacaWGUbGaamizaaWcbeaajugibiaaiIcacaWG1bGaaGikaiaadAgacaaIOaGaamiDaiaaiMcacaaIPaGaaGykaiaai2dacqGHsislcqaHepaDcaaI8aGaaGimaaaa@52A2@ and then the system is with local memory.
  2. When  f(t)= 0 t (tτ) r h(τ)dτ, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMbGaaGikaiaadshacaaIPaGaaGypaOWaa8qmaeqaleaajugibiaaicdaaSqaaKqzGeGaamiDaaGaey4kIipacaaIOaGaamiDaiabgkHiTiabes8a0jaaiMcakmaaCaaaleqabaqcLbsacaWGYbaaaiaadIgacaaIOaGaeqiXdqNaaGykaiaadsgacqaHepaDcaaISaaaaa@4FEE@ the system is with distributed memory (recent memory),
  3. When f(t)= t (tτ) r h(τ)dτ, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMbGaaGikaiaadshacaaIPaGaaGypaOWaa8qmaeqaleaajugibiabgkHiTiabg6HiLcWcbaqcLbsacaWG0baacqGHRiI8aiaaiIcacaWG0bGaeyOeI0IaeqiXdqNaaGykaOWaaWbaaSqabeaajugibiaadkhaaaGaamiAaiaaiIcacqaHepaDcaaIPaGaamizaiabes8a0jaaiYcaaaa@5192@ the system is with ancient memory.

Now, we consider (5) and assume that fϵ C 1 ( + ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMbWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8caWGdbGcdaahaaWcbeqaaKqzGeGaaGymaaaacaaIOaWefv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiyaacqGFDeIukmaaCaaaleqabaqcLbsacqGHRaWkaaGaaGykaaaa@5588@ , it is interesting to determine memory effects associated with the operator D G α f(t) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGebGcdaqhaaWcbaqcLbsacaWGhbaaleaajugibiabeg7aHbaacaWGMbGaaGikaiaadshacaaIPaaaaa@4070@ . Indeed by using the mean value theorem, we have

D t α u(t)= u( t α )u(t) t α t = u ' (θ), t α <θ<t.      (4) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGebGcdaqhaaWcbaqcLbsacaWG0baaleaajugibiabeg7aHbaacaWG1bGaaGikaiaadshacaaIPaGaaGypaOWaaSaaaeaajugibiaadwhacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHbaacaaIPaGaeyOeI0IaamyDaiaaiIcacaWG0bGaaGykaaGcbaqcLbsacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdegaaiabgkHiTiaadshaaaGaaGypaiaadwhakmaaCaaaleqabaqcLbsacaWGNaaaaiaaiIcacqaH4oqCcaaIPaGaaGilaiaaysW7caWG0bGcdaahaaWcbeqaaKqzGeGaeqySdegaaiaaiYdacqaH4oqCcaaI8aGaamiDaiaai6cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeinaiaabMcaaaa@68BD@

From (4), we find that, Arg( D t α u(t))=Arg( u ' (θ))=θ. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbbGaamOCaiaadEgacaaIOaGaamiraOWaa0baaSqaaKqzGeGaamiDaaWcbaqcLbsacqaHXoqyaaGaamyDaiaaiIcacaWG0bGaaGykaiaaiMcacaaI9aGaamyqaiaadkhacaWGNbGaaGikaiaadwhakmaaCaaaleqabaqcLbsacaWGNaaaaiaaiIcacqaH4oqCcaaIPaGaaGykaiaai2dacqaH4oqCcaaIUaaaaa@524B@ Thus M ind =θt. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnbGcdaWgaaWcbaqcLbsacaWGPbGaamOBaiaadsgaaSqabaqcLbsacaaI9aGaeqiUdeNaeyOeI0IaamiDaiaac6caaaa@42A3@ , Thus t α t< M ind <0,0<α<1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdegaaiabgkHiTiaadshacaaI8aGaamytaOWaaSbaaSqaaKqzGeGaamyAaiaad6gacaWGKbaaleqaaKqzGeGaaGipaiaaicdacaaISaGaaGjcVlaaicdacaaI8aGaeqySdeMaaGipaiaaigdaaaa@4BFF@ , which stands for non-deterministic memory compression.

3. The new α-difference operator

In an analog to the q-difference operator (1), we present the definition of ND,

New definition 4

D α DO f(t)={ f( t α )f(t) t α t , 0<α<1,0<t<1orα>1,t>1 f(t)f( t α ) t t α , 0<α<1,t>1orα>1,0<t<1 f ' (t), α=1,fϵ C 1 ( + ) f ' (1), t=1        (5) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGebGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaamOzaiaaiIcacaWG0bGaaGykaiaai2dakmaaceaabaqcLbsafaqabeqabaaakeaajugibuaabeqaeiaaaaGcbaWaaSaaaeaajugibiaadAgacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHbaacaaIPaGaeyOeI0IaamOzaiaaiIcacaWG0bGaaGykaaGcbaqcLbsacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdegaaiabgkHiTiaadshaaaGaaGilaiaaywW7aOqaaKqzGeGaaGimaiaaiYdacqaHXoqycaaI8aGaaGymaiaaiYcacaaIWaGaaGipaiaadshacaaI8aGaaGymaiaayIW7caWGVbGaamOCaiaayIW7cqaHXoqycaaI+aGaaGymaiaaiYcacaWG0bGaaGOpaiaaigdaaOqaamaalaaabaqcLbsacaWGMbGaaGikaiaadshacaaIPaGaeyOeI0IaamOzaiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdegaaiaaiMcaaOqaaKqzGeGaamiDaiabgkHiTiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaaaaiaaiYcaaOqaaKqzGeGaaGimaiaaiYdacqaHXoqycaaI8aGaaGymaiaaiYcacaWG0bGaaGOpaiaaigdacaaMi8Uaam4BaiaadkhacaaMi8UaeqySdeMaaGOpaiaaigdacaaISaGaaGimaiaaiYdacaWG0bGaaGipaiaaigdaaOqaaKqzGeGaamOzaOWaaWbaaSqabeaajugibiaadEcaaaGaaGikaiaadshacaaIPaGaaGilaaGcbaqcLbsacqaHXoqycaaI9aGaaGymaiaaiYcacaaMi8UaamOzamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8x9diVaam4qaOWaaWbaaSqabeaajugibiaaigdaaaGaaGikamrr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4xhHiLcdaahaaWcbeqaaKqzGeGaey4kaScaaiaaiMcaaOqaaKqzGeGaamOzaOWaaWbaaSqabeaajugibiaadEcaaaGaaGikaiaaigdacaaIPaGaaGilaaGcbaqcLbsacaWG0bGaaGypaiaaigdaaaaaaaGccaGL7baacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabwdacaqGPaaaaa@CB45@

We mention that (5) is an analog to (1). On the other hand, the nomenclature fractional may be referred to, as 0<α<1.

Theorem 1

(a) D α DO (f(t)+g(t))= D α DO f(t)+ D α DO g(t) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGebGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadAgacaaIOaGaamiDaiaaiMcacqGHRaWkcaWGNbGaaGikaiaadshacaaIPaGaaGykaiaai2dacaWGebGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaamOzaiaaiIcacaWG0bGaaGykaiabgUcaRiaadseakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaWGNbGaaGikaiaadshacaaIPaaaaa@59D8@ .

(b) D α DO (f(t)g(t))=g( t α ) D α DO f(t)+f(t) D α DO g(t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGebGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadAgacaaIOaGaamiDaiaaiMcacaWGNbGaaGikaiaadshacaaIPaGaaGykaiaai2dacaWGNbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaGaaGykaiaadseakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaWGMbGaaGikaiaadshacaaIPaGaey4kaSIaamOzaiaaiIcacaWG0bGaaGykaiaadseakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaWGNbGaaGikaiaadshaaaa@613B@ )

or D α DO (f(t)g(t))=f( t α ) D α DO g(t)+g(t) D α DO f(t) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaDaaaleaacqaHXoqyaeaacaWGebGaam4taaaajugibiaaiIcacaWGMbGaaGikaiaadshacaaIPaGaam4zaiaaiIcacaWG0bGaaGykaiaaiMcacaaI9aGaamOzaiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdegaaiaaiMcacaWGebGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaam4zaiaaiIcacaWG0bGaaGykaiabgUcaRiaadEgacaaIOaGaamiDaiaaiMcacaWGebGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaamOzaiaaiIcacaWG0bGaaGykaaaa@60BB@

(c) D N α ( f(t) g(t) )= g(t) D N α f(t)f(t) D N α g(t) g(t)g( t α ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGebGcdaqhaaWcbaqcLbsacaWGobaaleaajugibiabeg7aHbaacaaIOaGcdaWcaaqaaKqzGeGaamOzaiaaiIcacaWG0bGaaGykaaGcbaqcLbsacaWGNbGaaGikaiaadshacaaIPaaaaiaaiMcacqGH9aqpkmaalaaabaqcLbsacaWGNbGaaGikaiaadshacaaIPaGaamiraOWaa0baaSqaaKqzGeGaamOtaaWcbaqcLbsacqaHXoqyaaGaamOzaiaaiIcacaWG0bGaaGykaiabgkHiTiaadAgacaaIOaGaamiDaiaaiMcacaWGebGcdaqhaaWcbaqcLbsacaWGobaaleaajugibiabeg7aHbaacaWGNbGaaGikaiaadshacaaIPaaakeaajugibiaadEgacaaIOaGaamiDaiaaiMcacaWGNbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaGaaGykaaaaaaa@68F2@

(d) D α DO (f (t) 2 )= D α DO f(t)(f( t α )+f(t)). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGebGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadAgacaaIOaGaamiDaiaaiMcakmaaCaaaleqabaqcLbsacaaIYaaaaiaaiMcacaaI9aGaamiraOWaa0baaSqaaKqzGeGaeqySdegaleaajugibiaadseacaWGpbaaaiaadAgacaaIOaGaamiDaiaaiMcacaaIOaGaamOzaiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdegaaiaaiMcacqGHRaWkcaWGMbGaaGikaiaadshacaaIPaGaaGykaiaai6caaaa@5993@

(e) D N α (f (t) n )= D α DO f(t) j=0 n1 f ( t α ) j f (t) nj MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGebGcdaqhaaWcbaqcLbsacaWGobaaleaajugibiabeg7aHbaacaaIOaGaamOzaiaaiIcacaWG0bGaaGykaOWaaWbaaSqabeaajugibiaad6gaaaGaaGykaiaai2dacaWGebGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaamOzaiaaiIcacaWG0bGaaGykaOWaaabmaeqaleaajugibiaadQgacaaI9aGaaGimaaWcbaqcLbsacaWGUbGaeyOeI0IaaGymaaGaeyyeIuoacaWGMbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaGaaGykaOWaaWbaaSqabeaajugibiaadQgaaaGaamOzaiaaiIcacaWG0bGaaGykaOWaaWbaaSqabeaajugibiaad6gacqGHsislcaWGQbaaaaaa@637F@ .

Proof

(a) LHS= (f( t α )+g( t α ))(f(t)+g(t)) t α t = f( t α )f(t) t α t + g( t α )g(t) t α t =RHS MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibiaadYeacaWGibGaam4uaiaai2dakmaalaaabaqcLbsacaaIOaGaamOzaiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdegaaiaaiMcacqGHRaWkcaWGNbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaGaaGykaiaaiMcacqGHsislcaaIOaGaamOzaiaaiIcacaWG0bGaaGykaiabgUcaRiaadEgacaaIOaGaamiDaiaaiMcacaaIPaaakeaajugibiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaGaeyOeI0IaamiDaaaaaOqaaKqzGeGaaGypaOWaaSaaaeaajugibiaadAgacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHbaacaaIPaGaeyOeI0IaamOzaiaaiIcacaWG0bGaaGykaaGcbaqcLbsacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdegaaiabgkHiTiaadshaaaGaey4kaSIcdaWcaaqaaKqzGeGaam4zaiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdegaaiaaiMcacqGHsislcaWGNbGaaGikaiaadshacaaIPaaakeaajugibiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaGaeyOeI0IaamiDaaaacaaI9aGaamOuaiaadIeacaWGtbaaaaa@8023@ .

(b) LHS= f( t α )g( t α )f(t)g(t) t α t = f( t α )(g( t α )g(t))+f( t α )(g(t)f(t)g(t) t α t =f( t α ) (g( t α )g(t)) t α t +g(t) f( t α )f(t) t α t =RHS. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeGabaaakeaajugibiaadYeacaWGibGaam4uaiaai2dakmaalaaabaqcLbsacaWGMbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaGaaGykaiaadEgacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHbaacaaIPaGaeyOeI0IaamOzaiaaiIcacaWG0bGaaGykaiaadEgacaaIOaGaamiDaiaaiMcaaOqaaKqzGeGaamiDaOWaaWbaaSqabeaajugibiabeg7aHbaacqGHsislcaWG0baaaiaai2dakmaalaaabaqcLbsacaWGMbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaGaaGykaiaaiIcacaWGNbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaGaaGykaiabgkHiTiaadEgacaaIOaGaamiDaiaaiMcacaaIPaGaey4kaSIaamOzaiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdegaaiaaiMcacaaIOaGaam4zaiaaiIcacaWG0bGaaGykaiabgkHiTiaadAgacaaIOaGaamiDaiaaiMcacaWGNbGaaGikaiaadshacaaIPaaakeaajugibiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaGaeyOeI0IaamiDaaaaaOqaaKqzGeGaaGypaiaadAgacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHbaacaaIPaGcdaWcaaqaaKqzGeGaaGikaiaadEgacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHbaacaaIPaGaeyOeI0Iaam4zaiaaiIcacaWG0bGaaGykaiaaiMcaaOqaaKqzGeGaamiDaOWaaWbaaSqabeaajugibiabeg7aHbaacqGHsislcaWG0baaaiabgUcaRiaadEgacaaIOaGaamiDaiaaiMcakmaalaaabaqcLbsacaWGMbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaGaaGykaiabgkHiTiaadAgacaaIOaGaamiDaiaaiMcaaOqaaKqzGeGaamiDaOWaaWbaaSqabeaajugibiabeg7aHbaacqGHsislcaWG0baaaiaai2dacaWGsbGaamisaiaadofacaaIUaaaaaaa@B19B@

(c) LHS= 1 t α t ( f( t α ) g( t α ) f(t) g(t) )= 1 g(t)g( t α )( t α t) (f( t α )g(t)f(t)g( t α ))= 1 g(t)g( t α ) [ ((f( t α )f(t)) ( t α t) g(t)f(t) (g(t)+g( t α )) )( t α t) ]=RHS MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeqabaaakeaajugibuaabeqaceaaaOqaaKqzGeGaamitaiaadIeacaWGtbGaaGypaOWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaamiDaOWaaWbaaSqabeaajugibiabeg7aHbaacqGHsislcaWG0baaaiaaiIcakmaalaaabaqcLbsacaWGMbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaGaaGykaaGcbaqcLbsacaWGNbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaGaaGykaaaacqGHsislkmaalaaabaqcLbsacaWGMbGaaGikaiaadshacaaIPaaakeaajugibiaadEgacaaIOaGaamiDaiaaiMcaaaGaaGykaiaai2dakmaalaaabaqcLbsacaaIXaaakeaajugibiaadEgacaaIOaGaamiDaiaaiMcacaWGNbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaGaaGykaiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdegaaiabgkHiTiaadshacaaIPaaaaiaaiIcacaWGMbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaGaaGykaiaadEgacaaIOaGaamiDaiaaiMcacqGHsislcaWGMbGaaGikaiaadshacaaIPaGaam4zaiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdegaaiaaiMcacaaIPaGaaGypaaGcbaWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaam4zaiaaiIcacaWG0bGaaGykaiaadEgacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHbaacaaIPaaaaiaaiUfakmaalaaabaqcLbsacaaIOaGaaGikaiaadAgacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHbaacaaIPaGaeyOeI0IaamOzaiaaiIcacaWG0bGaaGykaiaaiMcaaOqaaKqzGeGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaGaeyOeI0IaamiDaiaaiMcaaaGaam4zaiaaiIcacaWG0bGaaGykaiabgkHiTiaadAgacaaIOaGaamiDaiaaiMcakmaalaaabaqcLbsacaaIOaGaeyOeI0Iaam4zaiaaiIcacaWG0bGaaGykaiabgUcaRiaadEgacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHbaacaaIPaGaaGykaaGcbaqcLbsacaaIPaGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaGaeyOeI0IaamiDaiaaiMcaaaGaaGyxaiaai2dacaWGsbGaamisaiaadofaaaaaaaaa@C2C6@

(d). Put g(t) = f(t) in (b)

(e) By using (d) and by induction.

The proof is completed

Now we identify the function that is invariant under the ND.

Theorem 2

The following function is invariant under the ND.

E α DO (t)= n=1 1 1+| t α n t α (n1) | ,t>0,0<α<1,,t1.      (6) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshacaaIPaGaaGypaOWaaebCaeqaleaajugibiaad6gacaaI9aGaaGymaaWcbaqcLbsacqGHEisPaiabg+GivdGcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaIXaGaey4kaSIaaiiFaiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaWGUbaaaaaacqGHsislcaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaaGikaiaad6gacqGHsislcaaIXaGaaGykaaaaaaGaaiiFaaaacaaISaGaamiDaiaai6dacaaIWaGaaGilaiaaicdacaaI8aGaeqySdeMaaGipaiaaigdacaaISaGaaGilaiaayIW7caWG0bGaeyiyIKRaaGymaiaai6cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOnaiaabMcaaaa@71B7@

Proof

The function which is invariant under the ND satisfies,

D α DO f(t)=f(t).       (7) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGebGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaamOzaiaaiIcacaWG0bGaaGykaiaai2dacaWGMbGaaGikaiaadshacaaIPaGaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4naiaabMcaaaa@4C8F@

First, let 0α<1Using (19) gives,

f( t α )=f(t)(1+( t α t)),0<t<1,0<α<1.      (8) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaGaaGykaiaai2dacaWGMbGaaGikaiaadshacaaIPaGaaGikaiaaigdacqGHRaWkcaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHbaacqGHsislcaWG0bGaaGykaiaaiMcacaaISaGaaGimaiaaiYdacaWG0bGaaGipaiaaigdacaaISaGaaGimaiaaiYdacqaHXoqycaaI8aGaaGymaiaai6cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeioaiaabMcaaaa@5C9E@

By iterating (8) and letting in each subsequent step, we have,

f( t α )=f(t)(1+( t α t)), f( t α 2 )=f( t α )(1+( t α 2 t α )), f( t α n )=f( t α (n1) )(1+( t α n t α (n1) )).        (9) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeabbaaaaOqaaKqzGeGaamOzaiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdegaaiaaiMcacaaI9aGaamOzaiaaiIcacaWG0bGaaGykaiaaiIcacaaIXaGaey4kaSIaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaGaeyOeI0IaamiDaiaaiMcacaaIPaGaaGilaaGcbaqcLbsacaWGMbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaaIYaaaaaaacaaIPaGaaGypaiaadAgacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHbaacaaIPaGaaGikaiaaigdacqGHRaWkcaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaaikdaaaaaaiabgkHiTiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaGaaGykaiaaiMcacaaISaaakeaajugibiabl6UinbGcbaqcLbsacaWGMbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaWGUbaaaaaacaaIPaGaaGypaiaadAgacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaaiIcacaWGUbGaeyOeI0IaaGymaiaaiMcaaaaaaiaaiMcacaaIOaGaaGymaiabgUcaRiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaamOBaaaaaaGaeyOeI0IaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaaiIcacaWGUbGaeyOeI0IaaGymaiaaiMcaaaaaaiaaiMcacaaIPaGaaGOlaaaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabMdacaqGPaaaaa@9973@

By applying the product of both sides and as n→∞, as 0<α<1 then, αn→0 and we get,

E α DO (t)=f(1) n=1 1 1+( t α n t α (n1) ) ,0<t<1,0<α<1.       (10) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshacaaIPaGaaGypaiaadAgacaaIOaGaaGymaiaaiMcakmaarahabeWcbaqcLbsacaWGUbGaaGypaiaaigdaaSqaaKqzGeGaeyOhIukacqGHpis1aOWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaGymaiabgUcaRiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaamOBaaaaaaGaeyOeI0IaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaaiIcacaWGUbGaeyOeI0IaaGymaiaaiMcaaaaaaiaaiMcaaaGaaGilaiaaywW7caaIWaGaaGipaiaadshacaaI8aGaaGymaiaaiYcacaaIWaGaaGipaiabeg7aHjaaiYdacaaIXaGaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaabcdacaqGPaaaaa@720D@

Second, let t>1,0<α<1 and by the same way, we find,

E α DO (t)=f(1) n=1 1 1+( t α n1 t α n ) ,t>1,0<α<1.       (11) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshacaaIPaGaaGypaiaadAgacaaIOaGaaGymaiaaiMcakmaarahabeWcbaqcLbsacaWGUbGaaGypaiaaigdaaSqaaKqzGeGaeyOhIukacqGHpis1aOWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaGymaiabgUcaRiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaamOBaiabgkHiTiaaigdaaaaaaiabgkHiTiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaWGUbaaaaaacaaIPaaaaiaaiYcacaWG0bGaaGOpaiaaigdacaaISaGaaGimaiaaiYdacqaHXoqycaaI8aGaaGymaiaai6cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqGXaGaaeykaaaa@6D9D@

Here, we take f(1)=1. From (10) and (11), we get (6).

This completes the proof .

Now, consider the equation,

D α DO f(t)=λf(t),λ=ib.     (12) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGebGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaamOzaiaaiIcacaWG0bGaaGykaiaai2dacqaH7oaBcaWGMbGaaGikaiaadshacaaIPaGaaGilaiaaysW7cqaH7oaBcaaI9aGaeyOeI0IaamyAaiaadkgacaaIUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaabkdacaqGPaaaaa@552C@

The solution of (12) is,

E α DO (t,ib)= n=1 1 1+ (ib|) n t α n t α (n1) | = m=1 1 (1+ b 2m | t α 2m t α (2m1) | 2 ) +i m=1 b m | t α 2m+1 t α 2m) | (1+ b 2m | t α 2m+1 t α 2m) | 2 ) .        (13) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeWabaaakeaajugibiaadweakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaamiDaiaaiYcacqGHsislcaWGPbGaamOyaiaaiMcacaaI9aGcdaqeWbqabSqaaKqzGeGaamOBaiaai2dacaaIXaaaleaajugibiabg6HiLcGaey4dIunakmaalaaabaqcLbsacaaIXaaakeaajugibiaaigdacqGHRaWkcaaIOaGaeyOeI0IaamyAaiaadkgacaGG8bGaaGykaOWaaWbaaSqabeaakmaaCaaaleqabaqcLbsacaWGUbaaaaaacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaamOBaaaaaaGaeyOeI0IaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaaiIcacaWGUbGaeyOeI0IaaGymaiaaiMcaaaaaaiaacYhaaaGaaGypaaGcbaaabaWaaebCaeqaleaajugibiaad2gacaaI9aGaaGymaaWcbaqcLbsacqGHEisPaiabg+GivdGcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaIOaGaaGymaiabgUcaRiaadkgakmaaCaaaleqabaqcLbsacaaIYaGaamyBaaaacaGG8bGaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaaikdacaWGTbaaaaaacqGHsislcaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaaGikaiaaikdacaWGTbGaeyOeI0IaaGymaiaaiMcaaaaaaiaacYhakmaaCaaaleqabaqcLbsacaaIYaaaaiaaiMcaaaGaey4kaSIaamyAaOWaaebCaeqaleaajugibiaad2gacaaI9aGaaGymaaWcbaqcLbsacqGHEisPaiabg+GivdGcdaWcaaqaaKqzGeGaamOyaOWaaWbaaSqabeaajugibiaad2gaaaGaaGjcVlaacYhacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaaGOmaiaad2gacqGHRaWkcaaIXaaaaaaacqGHsislcaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaaGOmaiaad2gacaaIPaaaaaaacaGG8baakeaajugibiaaiIcacaaIXaGaey4kaSIaamOyaOWaaWbaaSqabeaajugibiaaikdacaWGTbaaaiaacYhacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaaGOmaiaad2gacqGHRaWkcaaIXaaaaaaacqGHsislcaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaaGOmaiaad2gacaaIPaaaaaaacaGG8bGcdaahaaWcbeqaaKqzGeGaaGOmaaaacaaIPaaaaiaai6caaaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaae4maiaabMcaaaa@C9E1@

Eq. (13) suggests to write,

co s α DO (t,b)= m=1 1 (1+ b 2m | t α 2m t α (2m1) | 2 ) , si n α DO (t,b)= m=0 b m | t α 2m+1 t α 2m) | (1+ b 2m | t α 2m+1 t α 2m) | 2 ) ,t>0,0<α<1.        (14) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqaaeWabaaakeaajugibiaadogacaWGVbGaam4CaOWaa0baaSqaaKqzGeGaeqySdegaleaajugibiaadseacaWGpbaaaiaaiIcacaWG0bGaaGilaiaadkgacaaIPaGaaGypaOWaaebCaeqaleaajugibiaad2gacaaI9aGaaGymaaWcbaqcLbsacqGHEisPaiabg+GivdGcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaIOaGaaGymaiabgUcaRiaadkgakmaaCaaaleqabaqcLbsacaaIYaGaamyBaaaacaGG8bGaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaaikdacaWGTbaaaaaacqGHsislcaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaaGikaiaaikdacaWGTbGaeyOeI0IaaGymaiaaiMcaaaaaaiaacYhakmaaCaaaleqabaqcLbsacaaIYaaaaiaaiMcaaaGaaGilaiaaywW7aOqaaaqaaKqzGeGaam4CaiaadMgacaWGUbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshacaaISaGaamOyaiaaiMcacaaI9aGcdaqeWbqabSqaaKqzGeGaamyBaiaai2dacaaIWaaaleaajugibiabg6HiLcGaey4dIunakmaalaaabaqcLbsacaWGIbGcdaahaaWcbeqaaKqzGeGaamyBaaaacaaMi8UaaiiFaiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaaIYaGaamyBaiabgUcaRiaaigdaaaaaaiabgkHiTiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaaIYaGaamyBaiaaiMcaaaaaaiaacYhaaOqaaKqzGeGaaGikaiaaigdacqGHRaWkcaWGIbGcdaahaaWcbeqaaKqzGeGaaGOmaiaad2gaaaGaaiiFaiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaaIYaGaamyBaiabgUcaRiaaigdaaaaaaiabgkHiTiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaaIYaGaamyBaiaaiMcaaaaaaiaacYhakmaaCaaaleqabaqcLbsacaaIYaaaaiaaiMcaaaGaaGilaiaaywW7caWG0bGaaGOpaiaaicdacaaISaGaaGjcVlaaicdacaaI8aGaeqySdeMaaGipaiaaigdacaaIUaaaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaabsdacaqGPaaaaa@C11B@

In the same way, we define,

cos h α DO (t,b)= 1 2 ( E α DO (t,b)+ E α DO (t,b))= m=1 1 (1 b 2m | t α 2m t α (2m1) | 2 ) , sin h α DO (t,b)= 1 2 ( E α DO (t,b) E α DO (t,b))= m=0 b m | t α 2m+1 t α 2m) | (1 b 2m | t α 2m+1 t α 2m) | 2 ) ,t>0,0<α<1.        (15) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqaaeWabaaakeaajugibiaadogacaWGVbGaam4CaiaadIgakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaamiDaiaaiYcacaWGIbGaaGykaiaai2dakmaalaaabaqcLbsacaaIXaaakeaajugibiaaikdaaaGaaGikaiaadweakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaamiDaiaaiYcacaWGIbGaaGykaiabgUcaRiaadweakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaamiDaiaaiYcacqGHsislcaWGIbGaaGykaiaaiMcacaaI9aGcdaqeWbqabSqaaKqzGeGaamyBaiaai2dacaaIXaaaleaajugibiabg6HiLcGaey4dIunakmaalaaabaqcLbsacaaIXaaakeaajugibiaaiIcacaaIXaGaeyOeI0IaamOyaOWaaWbaaSqabeaajugibiaaikdacaWGTbaaaiaacYhacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaaGOmaiaad2gaaaaaaiabgkHiTiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaaIOaGaaGOmaiaad2gacqGHsislcaaIXaGaaGykaaaaaaGaaiiFaOWaaWbaaSqabeaajugibiaaikdaaaGaaGykaaaacaaISaGaaGzbVdGcbaaabaqcLbsacaWGZbGaamyAaiaad6gacaWGObGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshacaaISaGaamOyaiaaiMcacaaI9aGcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaIYaaaaiaaiIcacaWGfbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshacaaISaGaamOyaiaaiMcacqGHsislcaWGfbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshacaaISaGaeyOeI0IaamOyaiaaiMcacaaIPaGaaGypaOWaaebCaeqaleaajugibiaad2gacaaI9aGaaGimaaWcbaqcLbsacqGHEisPaiabg+GivdGcdaWcaaqaaKqzGeGaamOyaOWaaWbaaSqabeaajugibiaad2gaaaGaaGjcVlaacYhacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaaGOmaiaad2gacqGHRaWkcaaIXaaaaaaacqGHsislcaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaaGOmaiaad2gacaaIPaaaaaaacaGG8baakeaajugibiaaiIcacaaIXaGaeyOeI0IaamOyaOWaaWbaaSqabeaajugibiaaikdacaWGTbaaaiaacYhacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaaGOmaiaad2gacqGHRaWkcaaIXaaaaaaacqGHsislcaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaaGOmaiaad2gacaaIPaaaaaaacaGG8bGcdaahaaWcbeqaaKqzGeGaaGOmaaaacaaIPaaaaiaaiYcacaaMf8UaamiDaiaai6dacaaIWaGaaGilaiaayIW7caaIWaGaaGipaiabeg7aHjaaiYdacaaIXaGaaGOlaaaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqG1aGaaeykaaaa@F603@

We remark that E α Do (0,b)=1,co s α DO (0,b)=1,cos h α DO (0,b)=1,si n α DO (0,b)=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+gaaaGaaGikaiaaicdacaaISaGaamOyaiaaiMcacaaI9aGaaGymaiaaiYcacaaMe8Uaam4yaiaad+gacaWGZbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaaicdacaaISaGaamOyaiaaiMcacaaI9aGaaGymaiaaiYcacaaMc8Uaam4yaiaad+gacaWGZbGaamiAaOWaa0baaSqaaKqzGeGaeqySdegaleaajugibiaadseacaWGpbaaaiaaiIcacaaIWaGaaGilaiaadkgacaaIPaGaaGypaiaaigdacaaISaGaaGjbVlaadohacaWGPbGaamOBaOWaa0baaSqaaKqzGeGaeqySdegaleaajugibiaadseacaWGpbaaaiaaiIcacaaIWaGaaGilaiaadkgacaaIPaGaaGypaiaaicdaaaa@7119@ and sin h α DO (0,b)=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGZbGaamyAaiaad6gacaWGObGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaaicdacaaISaGaamOyaiaaiMcacaaI9aGaaGimaaaa@4632@ .

3.1 Higher order fractional difference

We have,

D 2α DO f(t)= D α DO ( D α DO f(t))= D α DO ( f( t α )f(t) t α t ) = f( t α 2 )f( t α ) t α 2 t α f( t α )f(t) t α t = D N α (f( t α )) D N α (f(t)), D 3α DO f(t)= D α DO ( D α DO ( D α DO (f(t))))= D 2α DO (f( t α ))D 2 α DO f(t), n D nα DO f(t)= D α DO ( D α DO (.... D α DO (f(t))) )= D (n1)α DO (f( t α )) D (n1)α DO (f(t).          (16) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqaaeGbbaaaaOqaaKqzGeGaamiraOWaa0baaSqaaKqzGeGaaGOmaiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaWGMbGaaGikaiaadshacaaIPaGaaGypaiaadseakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaamiraOWaa0baaSqaaKqzGeGaeqySdegaleaajugibiaadseacaWGpbaaaiaadAgacaaIOaGaamiDaiaaiMcacaaIPaGaaGypaiaadseakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGcdaWcaaqaaKqzGeGaamOzaiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdegaaiaaiMcacqGHsislcaWGMbGaaGikaiaadshacaaIPaaakeaajugibiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaGaeyOeI0IaamiDaaaacaaIPaaakeaaaeaajugibiaai2dakmaalaaabaqcLbsacaWGMbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaaIYaaaaaaacaaIPaGaeyOeI0IaamOzaiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdegaaiaaiMcaaOqaaKqzGeGaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaaikdaaaaaaiabgkHiTiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaaaaiabgkHiTOWaaSaaaeaajugibiaadAgacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHbaacaaIPaGaeyOeI0IaamOzaiaaiIcacaWG0bGaaGykaaGcbaqcLbsacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdegaaiabgkHiTiaadshaaaGaaGypaiaadseakmaaDaaaleaajugibiaad6eaaSqaaKqzGeGaeqySdegaaiaaiIcacaWGMbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaGaaGykaiaaiMcacqGHsislcaWGebGcdaqhaaWcbaqcLbsacaWGobaaleaajugibiabeg7aHbaacaaIOaGaamOzaiaaiIcacaWG0bGaaGykaiaaiMcacaaISaaakeaajugibiaadseakmaaDaaaleaajugibiaaiodacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaamOzaiaaiIcacaWG0bGaaGykaiaai2dacaWGebGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadseakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaamiraOWaa0baaSqaaKqzGeGaeqySdegaleaajugibiaadseacaWGpbaaaiaaiIcacaWGMbGaaGikaiaadshacaaIPaGaaGykaiaaiMcacaaIPaGaaGypaiaadseakmaaDaaaleaajugibiaaikdacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadAgacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHbaacaaIPaGaaGykaiabgkHiTiaadseacaaIYaGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaamOzaiaaiIcacaWG0bGaaGykaiaaiYcaaOqaaKqzGeGaeSO7I0eakeaadaWfqaqaaKqzGeGaamOBaaWcbaqcLbsacaWGebGcdaqhaaWcbaqcLbsacaWGUbGaeqySdegaleaajugibiaadseacaWGpbaaaiaadAgacaaIOaGaamiDaiaaiMcacaaI9aGcdaagbaWcbaqcLbsacaWGebGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadseakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaaGOlaiaai6cacaaIUaGaaGOlaiaadseakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaamOzaiaaiIcacaWG0bGaaGykaiaaiMcacaaIPaaaleaaaiaawEJ=aKqzGeGaaGykaiaai2dacaWGebGcdaqhaaWcbaqcLbsacaaIOaGaamOBaiabgkHiTiaaigdacaaIPaGaeqySdegaleaajugibiaadseacaWGpbaaaiaaiIcacaWGMbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaGaaGykaiaaiMcacqGHsislcaWGebGcdaqhaaWcbaqcLbsacaaIOaGaamOBaiabgkHiTiaaigdacaaIPaGaeqySdegaleaajugibiaadseacaWGpbaaaiaaiIcacaWGMbGaaGikaiaadshacaaIPaGaaGOlaaWcbeaaaaqcLbsacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaabAdacaqGPaaaaa@3EFE@

When fϵ C 1 ( + ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMbWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8caWGdbGcdaahaaWcbeqaaKqzGeGaaGymaaaacaaIOaWefv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiyaacqGFDeIukmaaCaaaleqabaqcLbsacqGHRaWkaaGaaGykaaaa@5588@ , the ND mean value theorem states,

(i) f( a α )f(a) a α a = f ' (ξ), a α <ξ<a,0<t<1,0<α<1ort>1,α>1, (ii) f(a)f( a α ) a a α = f ' (ξ),a<ξ< a α ,t>1,0<α<1or0<t<1,α>1.       (17) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeWabaaakeaajugibiaaiIcacaWGPbGaaGykaiaayIW7kmaalaaabaqcLbsacaWGMbGaaGikaiaadggakmaaCaaaleqabaqcLbsacqaHXoqyaaGaaGykaiabgkHiTiaadAgacaaIOaGaamyyaiaaiMcaaOqaaKqzGeGaamyyaOWaaWbaaSqabeaajugibiabeg7aHbaacqGHsislcaWGHbaaaiaai2dacaWGMbGcdaahaaWcbeqaaKqzGeGaam4jaaaacaaIOaGaeqOVdGNaaGykaiaaiYcacaaMe8UaamyyaOWaaWbaaSqabeaajugibiabeg7aHbaacaaI8aGaeqOVdGNaaGipaiaadggacaaISaGaaGzbVlaaicdacaaI8aGaamiDaiaaiYdacaaIXaGaaGilaiaayIW7caaIWaGaaGipaiabeg7aHjaaiYdacaaIXaGaaGjbVlaad+gacaWGYbGaaGjcVlaadshacaaI+aGaaGymaiaaiYcacqaHXoqycaaI+aGaaGymaiaaiYcaaOqaaaqaaKqzGeGaaGikaiaadMgacaWGPbGaaGykaiaayIW7kmaalaaabaqcLbsacaWGMbGaaGikaiaadggacaaIPaGaeyOeI0IaamOzaiaaiIcacaWGHbGcdaahaaWcbeqaaKqzGeGaeqySdegaaiaaiMcaaOqaaKqzGeGaamyyaiabgkHiTiaadggakmaaCaaaleqabaqcLbsacqaHXoqyaaaaaiaai2dacaWGMbGcdaahaaWcbeqaaKqzGeGaam4jaaaacaaIOaGaeqOVdGNaaGykaiaaiYcacaaMe8UaamyyaiaaiYdacqaH+oaEcaaI8aGaamyyaOWaaWbaaSqabeaajugibiabeg7aHbaacaaISaGaaGzbVlaadshacaaI+aGaaGymaiaaiYcacaaMi8UaaGimaiaaiYdacqaHXoqycaaI8aGaaGymaiaaysW7caWGVbGaamOCaiaayIW7caaIWaGaaGipaiaadshacaaI8aGaaGymaiaaiYcacaaMi8UaeqySdeMaaGOpaiaaigdacaaIUaaaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaae4naiaabMcaaaa@BD7E@

Example. Consider the function f(t)=tn.

D α DO ( t n )= t nα t n t α t = j=0 n1 t jα t n1j = t n1 e n α (t), e n α (t)= j=0 n1 t j(α1) ,t>0,α>0orα>1,t0.       (18) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqaaeWabaaakeaajugibiaadseakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaamiDaOWaaWbaaSqabeaajugibiaad6gaaaGaaGykaiaai2dakmaalaaabaqcLbsacaWG0bGcdaahaaWcbeqaaKqzGeGaamOBaiabeg7aHbaacqGHsislcaWG0bGcdaahaaWcbeqaaKqzGeGaamOBaaaaaOqaaKqzGeGaamiDaOWaaWbaaSqabeaajugibiabeg7aHbaacqGHsislcaWG0baaaiaai2dakmaaqahabeWcbaqcLbsacaWGQbGaaGypaiaaicdaaSqaaKqzGeGaamOBaiabgkHiTiaaigdaaiabggHiLdGaamiDaOWaaWbaaSqabeaajugibiaadQgacqaHXoqyaaGaamiDaOWaaWbaaSqabeaajugibiaad6gacqGHsislcaaIXaGaeyOeI0IaamOAaaaacaaI9aGaamiDaOWaaWbaaSqabeaajugibiaad6gacqGHsislcaaIXaaaaiaadwgakmaaDaaaleaajugibiaad6gaaSqaaKqzGeGaeqySdegaaiaaiIcacaWG0bGaaGykaiaaiYcacaaMe8oakeaaaeaajugibiaadwgakmaaDaaaleaajugibiaad6gaaSqaaKqzGeGaeqySdegaaiaaiIcacaWG0bGaaGykaiaai2dakmaaqahabeWcbaqcLbsacaWGQbGaaGypaiaaicdaaSqaaKqzGeGaamOBaiabgkHiTiaaigdaaiabggHiLdGaamiDaOWaaWbaaSqabeaajugibiaadQgacaaIOaGaeqySdeMaeyOeI0IaaGymaiaaiMcaaaGaaGilaiaaywW7caWG0bGaaGOpaiaaicdacaaISaGaaGjcVlabeg7aHjaai6dacaaIWaGaaGjcVlaad+gacaWGYbGaaGjcVlabeg7aHjaai6dacaaIXaGaaGilaiaayIW7caWG0bGaeyyzImRaaGimaiaai6caaaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqG4aGaaeykaaaa@AC1D@

In (17), we put f(t)=tn, in this case, we find that,

ξ=( a n1 e n α (a) n ) 1 n1 ,n>1.     (19) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+oaEcaaI9aGaaGikaOWaaSaaaeaajugibiaadggakmaaCaaaleqabaqcLbsacaWGUbGaeyOeI0IaaGymaaaacaWGLbGcdaqhaaWcbaqcLbsacaWGUbaaleaajugibiabeg7aHbaacaaIOaGaamyyaiaaiMcaaOqaaKqzGeGaamOBaaaacaaIPaGcdaahaaWcbeqaaOWaaSaaaSqaaKqzGeGaaGymaaWcbaqcLbsacaWGUbGaeyOeI0IaaGymaaaaaaGaaGilaiaaysW7caWGUbGaaGOpaiaaigdacaaIUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaabMdacaqGPaaaaa@5A67@

4.α-DO integral operator and applications

We proceed to define the ND-integral by considering the ND equation.

We consider a basic equation,

D α DO (g(t))=K(t).,t>0,0<α<1.      (20) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGebGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadEgacaaIOaGaamiDaiaaiMcacaaIPaGaaGypaiaadUeacaaIOaGaamiDaiaaiMcacaaIUaGaaGilaiaadshacaaI+aGaaGimaiaaiYcacaaMi8UaaGimaiaaiYdacqaHXoqycaaI8aGaaGymaiaai6cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOmaiaabcdacaqGPaaaaa@58B5@

For the solution of (20), we have the following theorem.

Theorem 3

The solution of (20) is,

g(t)=g(1) k=1 | t α k t α k1 |K( t α k1 ),t>0,0<α<1.      (21) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGNbGaaGikaiaadshacaaIPaGaaGypaiaadEgacaaIOaGaaGymaiaaiMcacqGHsislkmaaqahabeWcbaqcLbsacaWGRbGaaGypaiaaigdaaSqaaKqzGeGaeyOhIukacqGHris5aiaacYhacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaam4AaaaaaaGaeyOeI0IaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaadUgacqGHsislcaaIXaaaaaaacaGG8bGaam4saiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaam4AaiabgkHiTiaaigdaaaaaaiaaiMcacaaISaGaamiDaiaai6dacaaIWaGaaGilaiaayIW7caaIWaGaaGipaiabeg7aHjaaiYdacaaIXaGaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGYaGaaeymaiaabMcaaaa@70F9@

Proof

First, let 0α<1 and rewrite (20) in the form,

g( t α )g(t)=K(t)( t α t).      (22) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGNbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqyaaGaaGykaiabgkHiTiaadEgacaaIOaGaamiDaiaaiMcacaaI9aGaam4saiaaiIcacaWG0bGaaGykaiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdegaaiabgkHiTiaadshacaaIPaGaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGYaGaaeOmaiaabMcaaaa@5462@

It is worth mentioning that (22) is a functional equation. By using the same steps, as was done in (6), we have,

g( t α )g(t)=K(t)( t α t), g( t α 2 )g( t α )=K( t α )( t α 2 t α ), g( t α k )g( t α k1 )=K( t α k1 )( t α k t α k1 ).       (23) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeabbaaaaOqaaKqzGeGaam4zaiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdegaaiaaiMcacqGHsislcaWGNbGaaGikaiaadshacaaIPaGaaGypaiaadUeacaaIOaGaamiDaiaaiMcacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHbaacqGHsislcaWG0bGaaGykaiaaiYcaaOqaaKqzGeGaam4zaiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaaGOmaaaaaaGaaGykaiabgkHiTiaadEgacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHbaacaaIPaGaaGypaiaadUeacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHbaacaaIPaGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaaIYaaaaaaacqGHsislcaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdegaaiaaiMcacaaISaaakeaajugibiabl6UinbGcbaqcLbsacaWGNbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaWGRbaaaaaacaaIPaGaeyOeI0Iaam4zaiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaam4AaiabgkHiTiaaigdaaaaaaiaaiMcacaaI9aGaam4saiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaam4AaiabgkHiTiaaigdaaaaaaiaaiMcacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaadUgaaaaaaiabgkHiTiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaWGRbGaeyOeI0IaaGymaaaaaaGaaGykaiaai6caaaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabkdacaqGZaGaaeykaaaa@A222@

Summing both sides of (23) and letting k →∞, we get,

g(t)=g(1) k=1 ( t α k t α k1 )K( t α k1 ),0<t<1,0<α<1.       (24) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGNbGaaGikaiaadshacaaIPaGaaGypaiaadEgacaaIOaGaaGymaiaaiMcacqGHsislkmaaqahabeWcbaqcLbsacaWGRbGaaGypaiaaigdaaSqaaKqzGeGaeyOhIukacqGHris5aiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaam4AaaaaaaGaeyOeI0IaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaadUgacqGHsislcaaIXaaaaaaacaaIPaGaam4saiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaam4AaiabgkHiTiaaigdaaaaaaiaaiMcacaaISaGaaGimaiaaiYdacaWG0bGaaGipaiaaigdacaaISaGaaGjcVlaaicdacaaI8aGaeqySdeMaaGipaiaaigdacaaIUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGYaGaaeinaiaabMcaaaa@7283@

The second case is dealt with in the same way and we get,

g(t)=g(1) k=1 ( t α k1 t α k )K( t α k1 ),t>1,0<α<1,      (25) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGNbGaaGikaiaadshacaaIPaGaaGypaiaadEgacaaIOaGaaGymaiaaiMcacqGHsislkmaaqahabeWcbaqcLbsacaWGRbGaaGypaiaaigdaaSqaaKqzGeGaeyOhIukacqGHris5aiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaam4AaiabgkHiTiabgkHiTiaaigdaaaaaaiabgkHiTiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaWGRbaaaaaacaaIPaGaam4saiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaam4AaiabgkHiTiaaigdaaaaaaiaaiMcacaaISaGaaGzbVlaadshacaaI+aGaaGymaiaaiYcacaaMi8UaaGimaiaaiYdacqaHXoqycaaI8aGaaGymaiaaiYcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOmaiaabwdacaqGPaaaaa@72DC@

By using (24) and (25), we get (21) and the proof is completed .

4.1 α-DO integral

Indeed, the solution of (20) can be written symbolically,

g(t)= I α DO (K(t)={ g(1)+ t 1 K( t 1 ) d α t 1 , 0<t1, g(1)+ 1 t K( t 1 ) d α t 1 , t1.       (26) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGNbGaaGikaiaadshacaaIPaGaaGypaiaadMeakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaam4saiaaiIcacaWG0bGaaGykaiaai2dakmaaceaabaqcLbsafaqabeGacaaakeaajugibiaadEgacaaIOaGaaGymaiaaiMcacqGHRaWkkmaapedabeWcbaqcLbsacaWG0baaleaajugibiaaigdaaiabgUIiYdGaam4saiaaiIcacaWG0bGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGykaiaadsgakmaaBaaaleaajugibiabeg7aHbWcbeaajugibiaadshakmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaISaaakeaajugibiaaicdacaaI8aGaamiDaiabgsMiJkaaigdacaaISaaakeaajugibiaadEgacaaIOaGaaGymaiaaiMcacqGHRaWkkmaapedabeWcbaqcLbsacaaIXaaaleaajugibiaadshaaiabgUIiYdGaam4saiaaiIcacaWG0bGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGykaiaadsgakmaaBaaaleaajugibiabeg7aHbWcbeaajugibiaadshakmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaISaaakeaajugibiaadshacqGHLjYScaaIXaGaaGOlaaaaaOGaay5EaaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabkdacaqG2aGaaeykaaaa@8722@

By using (21) and (25), the α-DO integral definite integrals are defined by,

Definition 5

t 1 K( t 1 ) d α t 1 = k=1 ( t α k t α k1 )K( t α k1 ),0<t<1,0<α<1, 1 t K( t 1 ) d α t 1 = k=1 ( t α k1 t α k )K( t α k1 ),t>1,0<α<1.       (27) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeWabaaakeaadaWdXaqabSqaaKqzGeGaamiDaaWcbaqcLbsacaaIXaaacqGHRiI8aiaadUeacaaIOaGaamiDaOWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaaiMcacaWGKbGcdaWgaaWcbaqcLbsacqaHXoqyaSqabaqcLbsacaWG0bGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGypaOWaaabCaeqaleaajugibiaadUgacaaI9aGaaGymaaWcbaqcLbsacqGHEisPaiabggHiLdGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaWGRbaaaaaacqGHsislcaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaam4AaiabgkHiTiaaigdaaaaaaiaaiMcacaWGlbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaWGRbGaeyOeI0IaaGymaaaaaaGaaGykaiaaiYcacaaMf8UaaGimaiaaiYdacaWG0bGaaGipaiaaigdacaaISaGaaGjcVlaaicdacaaI8aGaeqySdeMaaGipaiaaigdacaaISaaakeaaaeaadaWdXaqabSqaaKqzGeGaaGymaaWcbaqcLbsacaWG0baacqGHRiI8aiaadUeacaaIOaGaamiDaOWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaaiMcacaWGKbGcdaWgaaWcbaqcLbsacqaHXoqyaSqabaqcLbsacaWG0bGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGypaOWaaabCaeqaleaajugibiaadUgacaaI9aGaaGymaaWcbaqcLbsacqGHEisPaiabggHiLdGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaWGRbGaeyOeI0IaaGymaaaaaaGaeyOeI0IaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaadUgaaaaaaiaaiMcacaWGlbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaWGRbGaeyOeI0IaaGymaaaaaaGaaGykaiaaiYcacaaMf8UaamiDaiaai6dacaaIXaGaaGilaiaayIW7caaIWaGaaGipaiabeg7aHjaaiYdacaaIXaGaaGOlaaaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOmaiaabEdacaqGPaaaaa@BA4C@

We can rewrite (27) by,

0 t K( t 1 ) d α t 1 = k=1 | t α k t α k1 |K( t α k1 ),t>0,0<α<1.     (28) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqaleaajugibiaaicdaaSqaaKqzGeGaamiDaaGaey4kIipacaWGlbGaaGikaiaadshakmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaIPaGaamizaOWaaSbaaSqaaKqzGeGaeqySdegaleqaaKqzGeGaamiDaOWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaai2dakmaaqahabeWcbaqcLbsacaWGRbGaaGypaiaaigdaaSqaaKqzGeGaeyOhIukacqGHris5aiaacYhacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaam4AaaaaaaGaeyOeI0IaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaadUgacqGHsislcaaIXaaaaaaacaGG8bGaam4saiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaam4AaiabgkHiTiaaigdaaaaaaiaaiMcacaaISaGaamiDaiaai6dacaaIWaGaaGilaiaayIW7caaIWaGaaGipaiabeg7aHjaaiYdacaaIXaGaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabkdacaqG4aGaaeykaaaa@79C6@

Further, we have,

a b f(t)d t α = 1 b f(t)d t α 1 a f(t)d t α ,b>a>1, a b f(t)d t α = b 1 f(t)d t α a 1 f(t)d t α ,a<b<1.        (29) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeWabaaakeaadaWdXaqabSqaaKqzGeGaamyyaaWcbaqcLbsacaWGIbaacqGHRiI8aiaadAgacaaIOaGaamiDaiaaiMcacaWGKbGaamiDaOWaaSbaaSqaaKqzGeGaeqySdegaleqaaKqzGeGaaGypaOWaa8qmaeqaleaajugibiaaigdaaSqaaKqzGeGaamOyaaGaey4kIipacaWGMbGaaGikaiaadshacaaIPaGaamizaiaadshakmaaBaaaleaajugibiabeg7aHbWcbeaajugibiabgkHiTOWaa8qmaeqaleaajugibiaaigdaaSqaaKqzGeGaamyyaaGaey4kIipacaWGMbGaaGikaiaadshacaaIPaGaamizaiaadshakmaaBaaaleaajugibiabeg7aHbWcbeaajugibiaaiYcacaaMi8UaamOyaiaai6dacaWGHbGaaGOpaiaaigdacaaISaaakeaaaeaadaWdXaqabSqaaKqzGeGaamyyaaWcbaqcLbsacaWGIbaacqGHRiI8aiaadAgacaaIOaGaamiDaiaaiMcacaWGKbGaamiDaOWaaSbaaSqaaKqzGeGaeqySdegaleqaaKqzGeGaaGypaOWaa8qmaeqaleaajugibiaadkgaaSqaaKqzGeGaaGymaaGaey4kIipacaWGMbGaaGikaiaadshacaaIPaGaamizaiaadshakmaaBaaaleaajugibiabeg7aHbWcbeaajugibiabgkHiTOWaa8qmaeqaleaajugibiaadggaaSqaaKqzGeGaaGymaaGaey4kIipacaWGMbGaaGikaiaadshacaaIPaGaamizaiaadshakmaaBaaaleaajugibiabeg7aHbWcbeaajugibiaaiYcacaaMi8UaamyyaiaaiYdacaWGIbGaaGipaiaaigdacaaIUaaaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOmaiaabMdacaqGPaaaaa@A065@

Further identities for definite integrals hold.

t 1 f(s)( D α DO ((g(s)) d α s= k=1 ( t α k t α k1 )f( t α k1 ) D N α (g( t α k1 ) = k=1 f( t α k1 )(g( t α k )g( t α k1 )), 1 t f(s)( D α DO ((g(s)) d α s= k=1 ( t α k1 t α k )f( t α k ) D G α (g( t α k ) = k=1 f( t α k )(g( t α k1 )g( t α k )).          (30) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeWbbaaaaOqaamaapedabeWcbaqcLbsacaWG0baaleaajugibiaaigdaaiabgUIiYdGaamOzaiaaiIcacaWGZbGaaGykaiaaiIcacaWGebGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaaiIcacaWGNbGaaGikaiaadohacaaIPaGaaGykaiaadsgakmaaBaaaleaajugibiabeg7aHbWcbeaajugibiaadohacaaI9aGcdaaeWbqabSqaaKqzGeGaam4Aaiaai2dacaaIXaaaleaajugibiabg6HiLcGaeyyeIuoacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaadUgaaaaaaiabgkHiTiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaWGRbGaeyOeI0IaaGymaaaaaaGaaGykaiaadAgacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaadUgacqGHsislcaaIXaaaaaaacaaIPaGaamiraOWaa0baaSqaaKqzGeGaamOtaaWcbaqcLbsacqaHXoqyaaGaaGikaiaadEgacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaadUgacqGHsislcaaIXaaaaaaacaaIPaaakeaaaeaajugibiaai2dakmaaqahabeWcbaqcLbsacaWGRbGaaGypaiaaigdaaSqaaKqzGeGaeyOhIukacqGHris5aiaadAgacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaadUgacqGHsislcaaIXaaaaaaacaaIPaGaaGikaiaadEgacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaadUgaaaaaaiaaiMcacqGHsislcaWGNbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaWGRbGaeyOeI0IaaGymaaaaaaGaaGykaiaaiMcacaaISaaakeaaaeaadaWdXaqabSqaaKqzGeGaaGymaaWcbaqcLbsacaWG0baacqGHRiI8aiaadAgacaaIOaGaam4CaiaaiMcacaaIOaGaamiraOWaa0baaSqaaKqzGeGaeqySdegaleaajugibiaadseacaWGpbaaaiaaiIcacaaIOaGaam4zaiaaiIcacaWGZbGaaGykaiaaiMcacaWGKbGcdaWgaaWcbaqcLbsacqaHXoqyaSqabaqcLbsacaWGZbGaaGypaOWaaabCaeqaleaajugibiaadUgacaaI9aGaaGymaaWcbaqcLbsacqGHEisPaiabggHiLdGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaWGRbGaeyOeI0IaaGymaaaaaaGaeyOeI0IaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaadUgaaaaaaiaaiMcacaWGMbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaWGRbaaaaaacaaIPaGaamiraOWaa0baaSqaaKqzGeGaam4raaWcbaqcLbsacqaHXoqyaaGaaGikaiaadEgacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaadUgaaaaaaiaaiMcaaOqaaaqaaKqzGeGaaGypaOWaaabCaeqaleaajugibiaadUgacaaI9aGaaGymaaWcbaqcLbsacqGHEisPaiabggHiLdGaamOzaiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaam4AaaaaaaGaaGykaiaaiIcacaWGNbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaWGRbGaeyOeI0IaaGymaaaaaaGaaGykaiabgkHiTiaadEgacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaadUgaaaaaaiaaiMcacaaIPaGaaGOlaaaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaabcdacaqGPaaaaa@1306@

t 1 ( D α DO (f(s)) d α s= t 1 f( s α )f(s) s α s d α s= k=1 (f( t α k )f( t α k1 )), 1 t ( D α DO (f(s)) d α s= 1 t f( s α )f(s) s α s d α s= k=1 (f( t α k1 )f( t α k )).         (31) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeWabaaakeaadaWdXaqabSqaaKqzGeGaamiDaaWcbaqcLbsacaaIXaaacqGHRiI8aiaaiIcacaWGebGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadAgacaaIOaGaam4CaiaaiMcacaaIPaGaamizaOWaaSbaaSqaaKqzGeGaeqySdegaleqaaKqzGeGaam4Caiaai2dakmaapedabeWcbaqcLbsacaWG0baaleaajugibiaaigdaaiabgUIiYdGcdaWcaaqaaKqzGeGaamOzaiaaiIcacaWGZbGcdaahaaWcbeqaaKqzGeGaeqySdegaaiaaiMcacqGHsislcaWGMbGaaGikaiaadohacaaIPaaakeaajugibiaadohakmaaCaaaleqabaqcLbsacqaHXoqyaaGaeyOeI0Iaam4CaaaacaWGKbGcdaWgaaWcbaqcLbsacqaHXoqyaSqabaqcLbsacaWGZbGaaGypaOWaaabCaeqaleaajugibiaadUgacaaI9aGaaGymaaWcbaqcLbsacqGHEisPaiabggHiLdGaaGikaiaadAgacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaadUgaaaaaaiaaiMcacqGHsislcaWGMbGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaWGRbGaeyOeI0IaaGymaaaaaaGaaGykaiaaiMcacaaISaaakeaaaeaadaWdXaqabSqaaKqzGeGaaGymaaWcbaqcLbsacaWG0baacqGHRiI8aiaaiIcacaWGebGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadAgacaaIOaGaam4CaiaaiMcacaaIPaGaamizaOWaaSbaaSqaaKqzGeGaeqySdegaleqaaKqzGeGaam4Caiaai2dakmaapedabeWcbaqcLbsacaaIXaaaleaajugibiaadshaaiabgUIiYdGcdaWcaaqaaKqzGeGaamOzaiaaiIcacaWGZbGcdaahaaWcbeqaaKqzGeGaeqySdegaaiaaiMcacqGHsislcaWGMbGaaGikaiaadohacaaIPaaakeaajugibiaadohakmaaCaaaleqabaqcLbsacqaHXoqyaaGaeyOeI0Iaam4CaaaacaWGKbGcdaWgaaWcbaqcLbsacqaHXoqyaSqabaqcLbsacaWGZbGaaGypaOWaaabCaeqaleaajugibiaadUgacaaI9aGaaGymaaWcbaqcLbsacqGHEisPaiabggHiLdGaaGikaiaadAgacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaadUgacqGHsislcaaIXaaaaaaacaaIPaGaeyOeI0IaamOzaiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaam4AaaaaaaGaaGykaiaaiMcacaaIUaaaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGXaGaaeykaaaa@D701@

5. Applications

As the function which is invariant under the FDO is obtained in (6), it establishes a calculus. So, it can be used to handle linear fractional difference equations.

5.1 The -DO linear dynamical system.

We consider the system,

D α DO (x(t)=ax(t)+by(t),  D N α y(t)=cx(t)+dy(t).      (32) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeqabaaakeaajugibiaadseakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaamiEaiaaiIcacaWG0bGaaGykaiaai2dacaWGHbGaaGjcVlaadIhacaaIOaGaamiDaiaaiMcacqGHRaWkcaWGIbGaamyEaiaaiIcacaWG0bGaaGykaiaaiYcacaqGGaGaamiraOWaa0baaSqaaKqzGeGaamOtaaWcbaqcLbsacqaHXoqyaaGaamyEaiaaiIcacaWG0bGaaGykaiaai2dacaWGJbGaaGjcVlaadIhacaaIOaGaamiDaiaaiMcacqGHRaWkcaWGKbGaamyEaiaaiIcacaWG0bGaaGykaiaai6caaaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaabkdacaqGPaaaaa@6A22@

To solve (32), let x(t)= c 1 E α DO (t,λ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4bGaaGikaiaadshacaaIPaGaaGypaiaadogakmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaWGfbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshacaaISaGaeq4UdWMaaGykaaaa@49E5@ and y(t)= c 2 E α DO (t,λ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG5bGaaGikaiaadshacaaIPaGaaGypaiaadogakmaaBaaaleaajugibiaaikdaaSqabaqcLbsacaWGfbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshacaaISaGaeq4UdWMaaGykaaaa@49E7@ . Direct calculation gives,

and the eigenvalues are,

λ 1,2 = 1 2 (a+d± (ad) 2 +4bc ).      (33) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7oaBkmaaBaaaleaajugibiaaigdacaaISaGaaGOmaaWcbeaajugibiaai2dakmaalaaabaqcLbsacaaIXaaakeaajugibiaaikdaaaGaaGikaiaadggacqGHRaWkcaWGKbGaeyySaeRcdaGcaaqaaKqzGeGaaGikaiaadggacqGHsislcaWGKbGaaGykaOWaaWbaaSqabeaajugibiaaikdaaaGaey4kaSIaaGinaiaadkgacaWGJbaaleqaaKqzGeGaaGykaiaai6cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaabodacaqGPaaaaa@58F9@

We focus our attention on the case when (a-d)2+4bc<0. Thus we have,

x(t)= E α DO (t, (a+d) 2 )(x(0)co s α Do (t,r)+y(0)si n N DO (t,r)), y(t)= E α DO (t, (a+d) 2 )(y(0)co s α DO (t,r)+x(0)si n α DO (t,r)), r= 1 2 (ad) 2 bc ,bc< (ad) 2 .         (34) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeabbaaaaOqaaKqzGeGaamiEaiaaiIcacaWG0bGaaGykaiaai2dacaWGfbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshacaaISaGcdaWcaaqaaKqzGeGaaGikaiaadggacqGHRaWkcaWGKbGaaGykaaGcbaqcLbsacaaIYaaaaiaaiMcacaaIOaGaamiEaiaaiIcacaaIWaGaaGykaiaayIW7caWGJbGaam4BaiaadohakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4BaaaacaaIOaGaamiDaiaaiYcacaWGYbGaaGykaiabgUcaRiaadMhacaaIOaGaaGimaiaaiMcacaWGZbGaamyAaiaad6gakmaaDaaaleaajugibiaad6eaaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshacaaISaGaamOCaiaaiMcacaaIPaGaaGilaaGcbaaabaqcLbsacaWG5bGaaGikaiaadshacaaIPaGaaGypaiaadweakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaamiDaiaaiYcakmaalaaabaqcLbsacaaIOaGaamyyaiabgUcaRiaadsgacaaIPaaakeaajugibiaaikdaaaGaaGykaiaaiIcacaWG5bGaaGikaiaaicdacaaIPaGaaGjcVlaadogacaWGVbGaam4CaOWaa0baaSqaaKqzGeGaeqySdegaleaajugibiaadseacaWGpbaaaiaaiIcacaWG0bGaaGilaiaadkhacaaIPaGaey4kaSIaamiEaiaaiIcacaaIWaGaaGykaiaadohacaWGPbGaamOBaOWaa0baaSqaaKqzGeGaeqySdegaleaajugibiaadseacaWGpbaaaiaaiIcacaWG0bGaaGilaiaadkhacaaIPaGaaGykaiaaiYcaaOqaaKqzGeGaamOCaiaai2dakmaalaaabaqcLbsacaaIXaaakeaajugibiaaikdaaaGcdaGcaaqaaKqzGeGaeyOeI0IaaGikaiaadggacqGHsislcaWGKbGaaGykaOWaaWbaaSqabeaajugibiaaikdaaaGaeyOeI0IaamOyaiaadogaaSqabaqcLbsacaaISaGaaGjbVlaadkgacaWGJbGaaGipaiabgkHiTiaaiIcacaWGHbGaeyOeI0IaamizaiaaiMcakmaaCaaaleqabaqcLbsacaaIYaaaaiaai6caaaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaabsdacaqGPaaaaa@C5AA@

The solutions in (34) are displayed against t for different values of α in Figures 1 (i) and (ii).

We remark that the maximum value holds at t = 1 and the solutions increase when 01, while they decrease when t > 1.

It is worth mentioning that when studying real phenomena, and by considering t normalized by characteristic time τc, the physical quantity attains its maximum or minimum at τc. This illustrates the importance of the use of this new difference operator in dynamical systems.

5.2 The - DO logistic equation

Consider the ND logistic equation which is characterized by the normalized growth and death rates, and by the carrier capacity,

D α DO u(t)=λu(t)(1u(t)),u(0)= u 0        (35) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGebGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaamyDaiaaiIcacaWG0bGaaGykaiaai2dacqaH7oaBcaaMi8UaamyDaiaaiIcacaWG0bGaaGykaiaayIW7caaIOaGaaGymaiabgkHiTiaadwhacaaIOaGaamiDaiaaiMcacaaIPaGaaGilaiaaysW7caWG1bGaaGikaiaaicdacaaIPaGaaGypaiaadwhakmaaBaaaleaajugibiaaicdaaSqabaGccaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqG1aGaaeykaaaa@6095@

Indeed, (35) is a nonlinear equation.

The solution of (35) is,

u(t)= I α DO (K(t)={ u(1)+ t 1 K( t 1 ) d α t 1 , 0<t1, u(1)+ 1 t K( t 1 ) d α t 1 , t1, K(t)=λu(t)(1u(t)).       (36) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG1bGaaGikaiaadshacaaIPaGaaGypaiaadMeakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaam4saiaaiIcacaWG0bGaaGykaiaai2dakmaaceaabaqcLbsafaqabeWacaaakeaajugibiaadwhacaaIOaGaaGymaiaaiMcacqGHRaWkkmaapedabeWcbaqcLbsacaWG0baaleaajugibiaaigdaaiabgUIiYdGaam4saiaaiIcacaWG0bGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGykaiaadsgakmaaBaaaleaajugibiabeg7aHbWcbeaajugibiaadshakmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaISaaakeaajugibiaaicdacaaI8aGaamiDaiabgsMiJkaaigdacaaISaaakeaajugibiaadwhacaaIOaGaaGymaiaaiMcacqGHRaWkkmaapedabeWcbaqcLbsacaaIXaaaleaajugibiaadshaaiabgUIiYdGaam4saiaaiIcacaWG0bGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGykaiaadsgakmaaBaaaleaajugibiabeg7aHbWcbeaajugibiaadshakmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaISaaakeaajugibiaaywW7caWG0bGaeyyzImRaaGymaiaaiYcaaOqaaKqzGeGaam4saiaaiIcacaWG0bGaaGykaiaai2dacqaH7oaBcaaMi8UaamyDaiaaiIcacaWG0bGaaGykaiaayIW7caaIOaGaaGymaiabgkHiTiaadwhacaaIOaGaamiDaiaaiMcacaaIPaGaaGOlaaGcbaaaaaGaay5EaaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqG2aGaaeykaaaa@9CB5@

By using (28), leads to,

u(t)= k=1 | t α k t α k1 |λu( t α k1 )(1u( t α k1 )),t>0,0<α<1.        (37) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeqabaaakeaajugibiaadwhacaaIOaGaamiDaiaaiMcacaaI9aGcdaaeWbqabSqaaKqzGeGaam4Aaiaai2dacaaIXaaaleaajugibiabg6HiLcGaeyyeIuoacaGG8bGaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaadUgaaaaaaiabgkHiTiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaWGRbGaeyOeI0IaaGymaaaaaaGaaiiFaiabeU7aSjaayIW7caWG1bGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaWGRbGaeyOeI0IaaGymaaaaaaGaaGykaiaayIW7caaIOaGaaGymaiabgkHiTiaadwhacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaadUgacqGHsislcaaIXaaaaaaacaaIPaGaaGykaiaaiYcacaaMf8UaamiDaiaai6dacaaIWaGaaGilaiaayIW7caaIWaGaaGipaiabeg7aHjaaiYdacaaIXaGaaGOlaaaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqG3aGaaeykaaaa@8112@

Here, to find the solution to (35) a discretization and an iterative scheme in (34) are used. So, we have,

u (n) (t)= k=1 | t α k t α k1 |λ u (n1) ( t α k1 )(1 u (n1) ( t α k1 )),t>0,0<α<1,        (38) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG1bGcdaahaaWcbeqaaKqzGeGaaGikaiaad6gacaaIPaaaaiaaiIcacaWG0bGaaGykaiaai2dakmaaqahabeWcbaqcLbsacaWGRbGaaGypaiaaigdaaSqaaKqzGeGaeyOhIukacqGHris5aiaacYhacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaam4AaaaaaaGaeyOeI0IaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaadUgacqGHsislcaaIXaaaaaaacaGG8bGaeq4UdWMaaGjcVlaadwhakmaaCaaaleqabaqcLbsacaaIOaGaamOBaiabgkHiTiaaigdacaaIPaaaaiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaam4AaiabgkHiTiaaigdaaaaaaiaaiMcacaaMi8UaaGikaiaaigdacqGHsislcaWG1bGcdaahaaWcbeqaaKqzGeGaaGikaiaad6gacqGHsislcaaIXaGaaGykaaaacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaadUgacqGHsislcaaIXaaaaaaacaaIPaGaaGykaiaaiYcacaaMf8UaamiDaiaai6dacaaIWaGaaGilaiaayIW7caaIWaGaaGipaiabeg7aHjaaiYdacaaIXaGaaGilaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqG4aGaaeykaaaa@8DBA@

Where,

u (0) (t)=u(0) n=1 1 1+ λ n | t α n1 t α n | ,      (39) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG1bGcdaahaaWcbeqaaKqzGeGaaGikaiaaicdacaaIPaaaaiaaiIcacaWG0bGaaGykaiaai2dacaWG1bGaaGikaiaaicdacaaIPaGcdaqeWbqabSqaaKqzGeGaamOBaiaai2dacaaIXaaaleaajugibiabg6HiLcGaey4dIunakmaalaaabaqcLbsacaaIXaaakeaajugibiaaigdacqGHRaWkcqaH7oaBkmaaCaaaleqabaqcLbsacaWGUbaaaiaacYhacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaamOBaiabgkHiTiaaigdaaaaaaiabgkHiTiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaWGUbaaaaaacaGG8baaaiaaiYcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaabMdacaqGPaaaaa@6709@

Thus, the first approximate solution of (35) is,

u (1) (t)= k=1 | t α k t α k1 |λ u (0) ( t α k1 )(1 u (0) ( t α k1 )),t>0,0<α<1,      (40) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG1bGcdaahaaWcbeqaaKqzGeGaaGikaiaaigdacaaIPaaaaiaaiIcacaWG0bGaaGykaiaai2dakmaaqahabeWcbaqcLbsacaWGRbGaaGypaiaaigdaaSqaaKqzGeGaeyOhIukacqGHris5aiaacYhacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaam4AaaaaaaGaeyOeI0IaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaadUgacqGHsislcaaIXaaaaaaacaGG8bGaeq4UdWMaaGjcVlaadwhakmaaCaaaleqabaqcLbsacaaIOaGaaGimaiaaiMcaaaGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaWGRbGaeyOeI0IaaGymaaaaaaGaaGykaiaayIW7caaIOaGaaGymaiabgkHiTiaadwhakmaaCaaaleqabaqcLbsacaaIOaGaaGimaiaaiMcaaaGaaGikaiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaWGRbGaeyOeI0IaaGymaaaaaaGaaGykaiaaiMcacaaISaGaaGzbVlaadshacaaI+aGaaGimaiaaiYcacaaMi8UaaGimaiaaiYdacqaHXoqycaaI8aGaaGymaiaaiYcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeinaiaabcdacaqGPaaaaa@8873@

Finally, we have,

u (1) (t)= k=1 | t α k t α k1 |λu(0) n=1 1 1+ λ n | t α k+n1 t α k+n2 | (1u(0) n=1 1 1+ λ n | t α k+n1 t α k+n2 | ),t>0,0<α<1.       (41) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeGabaaakeaajugibiaadwhakmaaCaaaleqabaqcLbsacaaIOaGaaGymaiaaiMcaaaGaaGikaiaadshacaaIPaGaaGypaOWaaabCaeqaleaajugibiaadUgacaaI9aGaaGymaaWcbaqcLbsacqGHEisPaiabggHiLdGaaiiFaiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaWGRbaaaaaacqGHsislcaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaam4AaiabgkHiTiaaigdaaaaaaiaacYhacqaH7oaBcaaMi8UaamyDaiaaiIcacaaIWaGaaGykaOWaaebCaeqaleaajugibiaad6gacaaI9aGaaGymaaWcbaqcLbsacqGHEisPaiabg+GivdGcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaIXaGaey4kaSIaeq4UdWMcdaahaaWcbeqaaKqzGeGaamOBaaaacaGG8bGaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaadUgacqGHRaWkcaWGUbGaeyOeI0IaaGymaaaaaaGaeyOeI0IaamiDaOWaaWbaaSqabeaajugibiabeg7aHPWaaWbaaSqabeaajugibiaadUgacqGHRaWkcaWGUbGaeyOeI0IaaGOmaaaaaaGaaiiFaaaacaaMi8oakeaajugibiaaiIcacaaIXaGaeyOeI0IaaGjcVlaadwhacaaIOaGaaGimaiaaiMcakmaarahabeWcbaqcLbsacaWGUbGaaGypaiaaigdaaSqaaKqzGeGaeyOhIukacqGHpis1aOWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaGymaiabgUcaRiabeU7aSPWaaWbaaSqabeaajugibiaad6gaaaGaaiiFaiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaWGRbGaey4kaSIaamOBaiabgkHiTiaaigdaaaaaaiabgkHiTiaadshakmaaCaaaleqabaqcLbsacqaHXoqykmaaCaaaleqabaqcLbsacaWGRbGaey4kaSIaamOBaiabgkHiTiaaikdaaaaaaiaacYhaaaGaaGykaiaaiYcacaaMf8UaamiDaiaai6dacaaIWaGaaGilaiaayIW7caaIWaGaaGipaiabeg7aHjaaiYdacaaIXaGaaGOlaaaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeinaiaabgdacaqGPaaaaa@BE22@

The results for the first approximation in (41) are displayed in Figures 2 (i) and (ii).

Figures 2 (i) and (ii) show that the solution of the logistic equation attains a steady state value asymptotically. We remark that the behavior of the solution, at t=1, changes significantly, which reveals that, there is a critical where the behavior changes remarkably.

5.3 The prey-predator mode
  1. To construct a model for a hypothetical dynamical system, the ordinary derivative is used.
  2. For modeling a dynamical system of living creatures, careful attention has to be taken into account, as a living being has a history. For example in a prey-predator model with harvesting, For a prey in order to be predated or harvested, it must exist not at time t but at time (t-t0) and this corresponds to time delay (or local memory). Further memory aspect that describes recent history (memory) or ancient history (memory) are represented by the integrals.a

0 t K(t t 1 )(.)d t 1 , t K(t t 1 )(.) d 1 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqaleaajugibiaaicdaaSqaaKqzGeGaamiDaaGaey4kIipacaWGlbGaaGikaiaadshacqGHsislcaWG0bGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGykaiaaiIcacaaIUaGaaGykaiaadsgacaWG0bGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGilaiaaysW7kmaapedabeWcbaqcLbsacqGHsislcqGHEisPaSqaaKqzGeGaamiDaaGaey4kIipacaWGlbGaaGikaiaadshacqGHsislcaWG0bGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGykaiaaiIcacaaIUaGaaGykaiaadsgakmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaIUaaaaa@6034@

Thus, in this case, to model a dynamical system, the ordinary derivative is not realistic and it is replaced by introducing a fractional derivative. The most realistic ones are the Riemann-Liouville and Caputo derivatives [15]. It is worth mentioning that, here, the fractional difference in (19) is with fractional local memory (tα-t), 0<α<1 (see the examples in section 2.2).

We consider the prey-predator model with proportional harvesting in the prey and predator.

Let u(t) and v(t) be, respectively, the prey and predator densities at time t.

  • Assume that the prey population grows logistically with an intrinsic growth rate λ in the absence of a predator.
  • Let γ be the food-independent death rate.

D α DO u(t)=λu(t)(1u(t))βu(t)v(t) μ 1 u(t), D α DO v(t)=γ+βu(t)v(t) μ 2 v(t),u(0)= u 0 ,v(0)= v 0 ,       (42) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeGabaaakeaajugibiaadseakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaWG1bGaaGikaiaadshacaaIPaGaaGypaiabeU7aSjaayIW7caWG1bGaaGikaiaadshacaaIPaGaaGjcVlaaiIcacaaIXaGaeyOeI0IaamyDaiaaiIcacaWG0bGaaGykaiaaiMcacqGHsislcqaHYoGycaWG1bGaaGikaiaadshacaaIPaGaamODaiaaiIcacaWG0bGaaGykaiabgkHiTiabeY7aTPWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaadwhacaaIOaGaamiDaiaaiMcacaaISaGaaGjbVdGcbaqcLbsacaWGebGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaamODaiaaiIcacaWG0bGaaGykaiaai2dacqGHsislcqaHZoWzcqGHRaWkcqaHYoGycaWG1bGaaGikaiaadshacaaIPaGaamODaiaaiIcacaWG0bGaaGykaiabgkHiTiabeY7aTPWaaSbaaSqaaKqzGeGaaGOmaaWcbeaajugibiaadAhacaaIOaGaamiDaiaaiMcacaaISaGaaGjbVlaadwhacaaIOaGaaGimaiaaiMcacaaI9aGaamyDaOWaaSbaaSqaaKqzGeGaaGimaaWcbeaajugibiaaiYcacaWG2bGaaGikaiaaicdacaaIPaGaaGypaiaadAhakmaaBaaaleaajugibiaaicdaaSqabaqcLbsacaaISaaaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqG0aGaaeOmaiaabMcaaaa@9B10@

Where µI,i =1,2 are the proportional harvesting coefficients, while β is the perdition rate of the prey.

Eq.(42) is written in the matrix form,

( D α DO u(t) D α DO v(t) )=M( u(t) v(t) )+( βu(t)v(t) γ+βu(t)v(t) ),M=( λ μ 1 0 0 μ 2 ).      (43) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaajugibuaabeqaceaaaOqaaKqzGeGaamiraOWaa0baaSqaaKqzGeGaeqySdegaleaajugibiaadseacaWGpbaaaiaadwhacaaIOaGaamiDaiaaiMcaaOqaaKqzGeGaamiraOWaa0baaSqaaKqzGeGaeqySdegaleaajugibiaadseacaWGpbaaaiaadAhacaaIOaGaamiDaiaaiMcaaaaakiaawIcacaGLPaaajugibiaai2dacaWGnbGcdaqadaqaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWG1bGaaGikaiaadshacaaIPaaakeaajugibiaadAhacaaIOaGaamiDaiaaiMcaaaaakiaawIcacaGLPaaajugibiabgUcaROWaaeWaaeaajugibuaabeqaceaaaOqaaKqzGeGaeyOeI0IaeqOSdiMaamyDaiaaiIcacaWG0bGaaGykaiaadAhacaaIOaGaamiDaiaaiMcaaOqaaKqzGeGaeyOeI0Iaeq4SdCMaey4kaSIaeqOSdiMaamyDaiaaiIcacaWG0bGaaGykaiaadAhacaaIOaGaamiDaiaaiMcaaaaakiaawIcacaGLPaaajugibiaaiYcacaWGnbGaaGypaOWaaeWaaeaajugibuaabeqaciaaaOqaaKqzGeGaeq4UdWMaeyOeI0IaeqiVd0McdaWgaaWcbaqcLbsacaaIXaaaleqaaaGcbaqcLbsacaaIWaaakeaajugibiaaicdaaOqaaKqzGeGaeyOeI0IaeqiVd0McdaWgaaWcbaqcLbsacaaIYaaaleqaaaaaaOGaayjkaiaawMcaaKqzGeGaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqG0aGaae4maiaabMcaaaa@8DE7@

We use the transformation,

( u(t) v(t) )=( E α DO (t,λ μ 1 ) 0 0 E α DO (t, μ 2 ) )( U(t) V(t) ),       (44) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaajugibuaabeqaceaaaOqaaKqzGeGaamyDaiaaiIcacaWG0bGaaGykaaGcbaqcLbsacaWG2bGaaGikaiaadshacaaIPaaaaaGccaGLOaGaayzkaaqcLbsacaaI9aGcdaqadaqaaKqzGeqbaeqabiGaaaGcbaqcLbsacaWGfbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshacaaISaGaeq4UdWMaeyOeI0IaeqiVd0McdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGykaaGcbaqcLbsacaaIWaaakeaajugibiaaicdaaOqaaKqzGeGaamyraOWaa0baaSqaaKqzGeGaeqySdegaleaajugibiaadseacaWGpbaaaiaaiIcacaWG0bGaaGilaiabgkHiTiabeY7aTPWaaSbaaSqaaKqzGeGaaGOmaaWcbeaajugibiaaiMcaaaaakiaawIcacaGLPaaadaqadaqaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWGvbGaaGikaiaadshacaaIPaaakeaajugibiaadAfacaaIOaGaamiDaiaaiMcaaaaakiaawIcacaGLPaaajugibiaaiYcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabsdacaqG0aGaaeykaaaa@77F4@

into (43) and we get,

( D α DO U(t) D α DO V(t) )= M ˜ 1 ( β E α DO (t,λ μ 1 ) E α DO (t, μ 2 )U(t)V(t) γ+β E α DO (t,λ μ 1 ) E α DO (t, μ 2 )U(t)V(t) )= ( β E α DO (t,λ μ 1 ) E α DO (t, μ 2 ) E α DO ( t α ,λ μ 1 ) E α DO ( t α , μ 2 ) U(t)V(t) γ+ β E α DO (t,λ μ 1 ) E α DO (t, μ 2 ) E α DO ( t α , μ 2 ) E α DO ( t α ,λ μ 1 ) U(t)V(t) ), M ˜ =( E α DO ( t α ,λ μ 1 ) 0 0 E α DO ( t α , μ 2 ) ).        (45) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeWbbaaaaOqaamaabmaabaqcLbsafaqabeGabaaakeaajugibiaadseakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaWGvbGaaGikaiaadshacaaIPaaakeaajugibiaadseakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaWGwbGaaGikaiaadshacaaIPaaaaaGccaGLOaGaayzkaaqcLbsacaaI9aGabmytayaaiaGcdaahaaWcbeqaaKqzGeGaeyOeI0IaaGymaaaakmaabmaabaqcLbsafaqabeGabaaakeaajugibiabgkHiTiabek7aIjaadweakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaamiDaiaaiYcacqaH7oaBcqGHsislcqaH8oqBkmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaIPaGaamyraOWaa0baaSqaaKqzGeGaeqySdegaleaajugibiaadseacaWGpbaaaiaaiIcacaWG0bGaaGilaiabgkHiTiabeY7aTPWaaSbaaSqaaKqzGeGaaGOmaaWcbeaajugibiaaiMcacaWGvbGaaGikaiaadshacaaIPaGaamOvaiaaiIcacaWG0bGaaGykaaGcbaqcLbsacqGHsislcqaHZoWzcqGHRaWkcqaHYoGycaWGfbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshacaaISaGaeq4UdWMaeyOeI0IaeqiVd0McdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGykaiaadweakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaamiDaiaaiYcacqGHsislcqaH8oqBkmaaBaaaleaajugibiaaikdaaSqabaqcLbsacaaIPaGaamyvaiaaiIcacaWG0bGaaGykaiaadAfacaaIOaGaamiDaiaaiMcaaaaakiaawIcacaGLPaaajugibiaai2daaOqaaaqaamaabmaabaqcLbsafaqabeGabaaakeaajugibiabgkHiTOWaaSaaaeaajugibiabek7aIjaadweakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaamiDaiaaiYcacqaH7oaBcqGHsislcqaH8oqBkmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaIPaGaamyraOWaa0baaSqaaKqzGeGaeqySdegaleaajugibiaadseacaWGpbaaaiaaiIcacaWG0bGaaGilaiabgkHiTiabeY7aTPWaaSbaaSqaaKqzGeGaaGOmaaWcbeaajugibiaaiMcaaOqaaKqzGeGaamyraOWaa0baaSqaaKqzGeGaeqySdegaleaajugibiaadseacaWGpbaaaiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdegaaiaaiYcacqaH7oaBcqGHsislcqaH8oqBkmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaIPaGaamyraOWaa0baaSqaaKqzGeGaeqySdegaleaajugibiaadseacaWGpbaaaiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdegaaiaaiYcacqGHsislcqaH8oqBkmaaBaaaleaajugibiaaikdaaSqabaqcLbsacaaIPaaaaiaadwfacaaIOaGaamiDaiaaiMcacaWGwbGaaGikaiaadshacaaIPaaakeaajugibiabgkHiTiabeo7aNjabgUcaROWaaSaaaeaajugibiabek7aIjaadweakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaamiDaiaaiYcacqaH7oaBcqGHsislcqaH8oqBkmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaIPaGaamyraOWaa0baaSqaaKqzGeGaeqySdegaleaajugibiaadseacaWGpbaaaiaaiIcacaWG0bGaaGilaiabgkHiTiabeY7aTPWaaSbaaSqaaKqzGeGaaGOmaaWcbeaajugibiaaiMcaaOqaaKqzGeGaamyraOWaa0baaSqaaKqzGeGaeqySdegaleaajugibiaadseacaWGpbaaaiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdegaaiaaiYcacqGHsislcqaH8oqBkmaaBaaaleaajugibiaaikdaaSqabaqcLbsacaaIPaGaamyraOWaa0baaSqaaKqzGeGaeqySdegaleaajugibiaadseacaWGpbaaaiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdegaaiaaiYcacqaH7oaBcqGHsislcqaH8oqBkmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaIPaaaaiaadwfacaaIOaGaamiDaiaaiMcacaWGwbGaaGikaiaadshacaaIPaaaaaGccaGLOaGaayzkaaqcLbsacaaISaaakeaaaeaajugibiqad2eagaacaiaai2dakmaabmaabaqcLbsafaqabeGacaaakeaajugibiaadweakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaamiDaOWaaWbaaSqabeaajugibiabeg7aHbaacaaISaGaeq4UdWMaeyOeI0IaeqiVd0McdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGykaaGcbaqcLbsacaaIWaaakeaajugibiaaicdaaOqaaKqzGeGaamyraOWaa0baaSqaaKqzGeGaeqySdegaleaajugibiaadseacaWGpbaaaiaaiIcacaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdegaaiaaiYcacqGHsislcqaH8oqBkmaaBaaaleaajugibiaaikdaaSqabaqcLbsacaaIPaaaaaGccaGLOaGaayzkaaqcLbsacaaIUaaakeaaaeaaaaqcLbsacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabsdacaqG1aGaaeykaaaa@6BBB@

By using (26), (45) is integrated to,

( U(t) V(t) )=( u 0 v 0 )+ 0 t ( β E α DO ( t 1 ,λ μ 1 ) E α DO ( t 1 , μ 2 ) E α DO ( t 1 α ,λ μ 1 ) E α DO ( t 1 α , μ 2 ) U( t 1 )V( t 1 ) γ+ β E α DO ( t 1 ,λ μ 1 ) E α DO (t, μ 2 ) E α DO ( t 1 α ,λ μ 1 ) E α DO ( t 1 α , μ 2 ) U( t 1 )V( t 1 ) ) d α t 1 .      (46) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaajugibuaabeqaceaaaOqaaKqzGeGaamyvaiaaiIcacaWG0bGaaGykaaGcbaqcLbsacaWGwbGaaGikaiaadshacaaIPaaaaaGccaGLOaGaayzkaaqcLbsacaaI9aGcdaqadaqaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWG1bGcdaWgaaWcbaqcLbsacaaIWaaaleqaaaGcbaqcLbsacaWG2bGcdaWgaaWcbaqcLbsacaaIWaaaleqaaaaaaOGaayjkaiaawMcaaKqzGeGaey4kaSIcdaWdXaqabSqaaKqzGeGaaGimaaWcbaqcLbsacaWG0baacqGHRiI8aOWaaeWaaeaajugibuaabeqaceaaaOqaaKqzGeGaeyOeI0IcdaWcaaqaaKqzGeGaeqOSdiMaamyraOWaa0baaSqaaKqzGeGaeqySdegaleaajugibiaadseacaWGpbaaaiaaiIcacaWG0bGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGilaiabeU7aSjabgkHiTiabeY7aTPWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaaiMcacaWGfbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshakmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaISaGaeyOeI0IaeqiVd0McdaWgaaWcbaqcLbsacaaIYaaaleqaaKqzGeGaaGykaaGcbaqcLbsacaWGfbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshakmaaDaaaleaajugibiaaigdaaSqaaKqzGeGaeqySdegaaiaaiYcacqaH7oaBcqGHsislcqaH8oqBkmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaIPaGaamyraOWaa0baaSqaaKqzGeGaeqySdegaleaajugibiaadseacaWGpbaaaiaaiIcacaWG0bGcdaqhaaWcbaqcLbsacaaIXaaaleaajugibiabeg7aHbaacaaISaGaeyOeI0IaeqiVd0McdaWgaaWcbaqcLbsacaaIYaaaleqaaKqzGeGaaGykaaaacaWGvbGaaGikaiaadshakmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaIPaGaamOvaiaaiIcacaWG0bGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGykaaGcbaqcLbsacqGHsislcqaHZoWzcqGHRaWkkmaalaaabaqcLbsacqaHYoGycaWGfbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshakmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaISaGaeq4UdWMaeyOeI0IaeqiVd0McdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGykaiaadweakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaamiDaiaaiYcacqGHsislcqaH8oqBkmaaBaaaleaajugibiaaikdaaSqabaqcLbsacaaIPaaakeaajugibiaadweakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaamiDaOWaa0baaSqaaKqzGeGaaGymaaWcbaqcLbsacqaHXoqyaaGaaGilaiabeU7aSjabgkHiTiabeY7aTPWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaaiMcacaWGfbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshakmaaDaaaleaajugibiaaigdaaSqaaKqzGeGaeqySdegaaiaaiYcacqGHsislcqaH8oqBkmaaBaaaleaajugibiaaikdaaSqabaqcLbsacaaIPaaaaiaadwfacaaIOaGaamiDaOWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaaiMcacaWGwbGaaGikaiaadshakmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaIPaaaaaGccaGLOaGaayzkaaqcLbsacaWGKbGcdaWgaaWcbaqcLbsacqaHXoqyaSqabaqcLbsacaWG0bGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqG0aGaaeOnaiaabMcaaaa@098E@

A discretization for (46) is,

( U (n) (t) V (n) (t) )=( u 0 v 0 )+ 0 t ( β E α DO ( t 1 ,λ μ 1 ) E α DO ( t 1 , μ 2 ) E α DO ( t 1 α ,λ μ 1 ) E α DO ( t 1 α , μ 2 ) U (n1) ( t 1 ) V (n1) ( t 1 ) γ+ E α DO ( t 1 ,λ μ 1 ) E α DO ( t 1 , μ 2 ) E α DO ( t 1 α ,λ μ 1 ) E α DO ( t 1 α , μ 2 ) U (n1) ( t 1 ) V (n1) ( t 1 ) ) d α t 1 ,       (47) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaajugibuaabeqaceaaaOqaaKqzGeGaamyvaOWaaWbaaSqabeaajugibiaaiIcacaWGUbGaaGykaaaacaaIOaGaamiDaiaaiMcaaOqaaKqzGeGaamOvaOWaaWbaaSqabeaajugibiaaiIcacaWGUbGaaGykaaaacaaIOaGaamiDaiaaiMcaaaaakiaawIcacaGLPaaajugibiaai2dakmaabmaabaqcLbsafaqabeGabaaakeaajugibiaadwhakmaaBaaaleaajugibiaaicdaaSqabaaakeaajugibiaadAhakmaaBaaaleaajugibiaaicdaaSqabaaaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkkmaapedabeWcbaqcLbsacaaIWaaaleaajugibiaadshaaiabgUIiYdGcdaqadaqaaKqzGeqbaeqabiqaaaGcbaqcLbsacqGHsislkmaalaaabaqcLbsacqaHYoGycaWGfbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshakmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaISaGaeq4UdWMaeyOeI0IaeqiVd0McdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGykaiaadweakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaamiDaOWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaaiYcacqGHsislcqaH8oqBkmaaBaaaleaajugibiaaikdaaSqabaqcLbsacaaIPaaakeaajugibiaadweakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaamiDaOWaa0baaSqaaKqzGeGaaGymaaWcbaqcLbsacqaHXoqyaaGaaGilaiabeU7aSjabgkHiTiabeY7aTPWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaaiMcacaWGfbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshakmaaDaaaleaajugibiaaigdaaSqaaKqzGeGaeqySdegaaiaaiYcacqGHsislcqaH8oqBkmaaBaaaleaajugibiaaikdaaSqabaqcLbsacaaIPaaaaiaadwfakmaaCaaaleqabaqcLbsacaaIOaGaamOBaiabgkHiTiaaigdacaaIPaaaaiaaiIcacaWG0bGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGykaiaadAfakmaaCaaaleqabaqcLbsacaaIOaGaamOBaiabgkHiTiaaigdacaaIPaaaaiaaiIcacaWG0bGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGykaaGcbaqcLbsacqGHsislcqaHZoWzcqGHRaWkkmaalaaabaqcLbsacaWGfbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshakmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaISaGaeq4UdWMaeyOeI0IaeqiVd0McdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGykaiaadweakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaamiDaOWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaaiYcacqGHsislcqaH8oqBkmaaBaaaleaajugibiaaikdaaSqabaqcLbsacaaIPaaakeaajugibiaadweakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaamiDaOWaa0baaSqaaKqzGeGaaGymaaWcbaqcLbsacqaHXoqyaaGaaGilaiabeU7aSjabgkHiTiabeY7aTPWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaaiMcacaWGfbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshakmaaDaaaleaajugibiaaigdaaSqaaKqzGeGaeqySdegaaiaaiYcacqGHsislcqaH8oqBkmaaBaaaleaajugibiaaikdaaSqabaqcLbsacaaIPaaaaiaadwfakmaaCaaaleqabaqcLbsacaaIOaGaamOBaiabgkHiTiaaigdacaaIPaaaaiaaiIcacaWG0bGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGykaiaadAfakmaaCaaaleqabaqcLbsacaaIOaGaamOBaiabgkHiTiaaigdacaaIPaaaaiaaiIcacaWG0bGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGykaaaaaOGaayjkaiaawMcaaKqzGeGaamizaOWaaSbaaSqaaKqzGeGaeqySdegaleqaaKqzGeGaamiDaOWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaaiYcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabsdacaqG3aGaaeykaaaa@23FD@

Where U (0) (t)= u 0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGvbGcdaahaaWcbeqaaKqzGeGaaGikaiaaicdacaaIPaaaaiaaiIcacaWG0bGaaGykaiaai2dacaWG1bGcdaWgaaWcbaqcLbsacaaIWaaaleqaaaaa@41FB@ and V (0) (t)= v 0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGwbGcdaahaaWcbeqaaKqzGeGaaGikaiaaicdacaaIPaaaaiaaiIcacaWG0bGaaGykaiaai2dacaWG2bGcdaWgaaWcbaqcLbsacaaIWaaaleqaaaaa@41FD@ .

The first approximation in (47) is,

( U (1) (t) V (1) (t) )=( u 0 v 0 )+ 0 t ( β E α DO ( t 1 ,λ μ 1 ) E α DO ( t 1 , μ 2 ) E α DO ( t 1 α ,λ μ 1 ) E α DO ( t 1 α , μ 2 ) u 0 v 0 γ+ β E α DO ( t 1 ,λ μ 1 ) E α DO ( t 1 , μ 2 ) E α DO ( t 1 α ,λ μ 1 ) E α DO ( t 1 α , μ 2 ) u 0 v 0 ) d α t 1 ,       (48) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaajugibuaabeqaceaaaOqaaKqzGeGaamyvaOWaaWbaaSqabeaajugibiaaiIcacaaIXaGaaGykaaaacaaIOaGaamiDaiaaiMcaaOqaaKqzGeGaamOvaOWaaWbaaSqabeaajugibiaaiIcacaaIXaGaaGykaaaacaaIOaGaamiDaiaaiMcaaaaakiaawIcacaGLPaaajugibiaai2dakmaabmaabaqcLbsafaqabeGabaaakeaajugibiaadwhakmaaBaaaleaajugibiaaicdaaSqabaaakeaajugibiaadAhakmaaBaaaleaajugibiaaicdaaSqabaaaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkkmaapedabeWcbaqcLbsacaaIWaaaleaajugibiaadshaaiabgUIiYdGcdaqadaqaaKqzGeqbaeqabiqaaaGcbaqcLbsacqGHsislkmaalaaabaqcLbsacqaHYoGycaWGfbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshakmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaISaGaeq4UdWMaeyOeI0IaeqiVd0McdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGykaiaadweakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaamiDaOWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaaiYcacqGHsislcqaH8oqBkmaaBaaaleaajugibiaaikdaaSqabaqcLbsacaaIPaaakeaajugibiaadweakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaamiDaOWaa0baaSqaaKqzGeGaaGymaaWcbaqcLbsacqaHXoqyaaGaaGilaiabeU7aSjabgkHiTiabeY7aTPWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaaiMcacaWGfbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshakmaaDaaaleaajugibiaaigdaaSqaaKqzGeGaeqySdegaaiaaiYcacqGHsislcqaH8oqBkmaaBaaaleaajugibiaaikdaaSqabaqcLbsacaaIPaaaaiaadwhakmaaBaaaleaajugibiaaicdaaSqabaqcLbsacaWG2bGcdaWgaaWcbaqcLbsacaaIWaaaleqaaaGcbaqcLbsacqGHsislcqaHZoWzcqGHRaWkkmaalaaabaqcLbsacqaHYoGycaWGfbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshakmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaISaGaeq4UdWMaeyOeI0IaeqiVd0McdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGykaiaadweakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaamiDaOWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaaiYcacqGHsislcqaH8oqBkmaaBaaaleaajugibiaaikdaaSqabaqcLbsacaaIPaaakeaajugibiaadweakmaaDaaaleaajugibiabeg7aHbWcbaqcLbsacaWGebGaam4taaaacaaIOaGaamiDaOWaa0baaSqaaKqzGeGaaGymaaWcbaqcLbsacqaHXoqyaaGaaGilaiabeU7aSjabgkHiTiabeY7aTPWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaaiMcacaWGfbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshakmaaDaaaleaajugibiaaigdaaSqaaKqzGeGaeqySdegaaiaaiYcacqGHsislcqaH8oqBkmaaBaaaleaajugibiaaikdaaSqabaqcLbsacaaIPaaaaiaadwhakmaaBaaaleaajugibiaaicdaaSqabaqcLbsacaWG2bGcdaWgaaWcbaqcLbsacaaIWaaaleqaaaaaaOGaayjkaiaawMcaaKqzGeGaamizaOWaaSbaaSqaaKqzGeGaeqySdegaleqaaKqzGeGaamiDaOWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaaiYcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabsdacaqG4aGaaeykaaaa@07FD@

together with using (44).

To prove the convergence of the iterated scheme (47), first, we use (6) and find that E α DO (t) n=1 1 1+ t α n e t ,t>0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfbGcdaqhaaWcbaqcLbsacqaHXoqyaSqaaKqzGeGaamiraiaad+eaaaGaaGikaiaadshacaaIPaGaeyizImQcdaqeWaqabSqaaKqzGeGaamOBaiaai2dacaaIXaaaleaajugibiabg6HiLcGaey4dIunakmaalaaabaqcLbsacaaIXaaakeaajugibiaaigdacqGHRaWkcaWG0bGcdaahaaWcbeqaaKqzGeGaeqySdeMcdaahaaWcbeqaaKqzGeGaamOBaaaaaaaaaiabgsMiJkaadwgakmaaCaaaleqabaqcLbsacaWG0baaaiaaiYcacaWG0bGaaGOpaiaaicdaaaa@594A@ . Thus, it is sufficient to prove the convergence in the classical case.

black U ˙ (t)=( u ˙ (t) v ˙ (t) )=M( u(t) v(t) )+( βu(t)v(t) γ+βu(t)v(t) ),M=( λ μ 1 0 0 μ 2 ).       (49) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIbGaamiBaiaadggacaWGJbGaam4AaiqadwfagaGaaiaaiIcacaWG0bGaaGykaiaai2dakmaabmaabaqcLbsafaqabeGabaaakeaajugibiqadwhagaGaaiaaiIcacaWG0bGaaGykaaGcbaqcLbsaceWG2bGbaiaacaaIOaGaamiDaiaaiMcaaaaakiaawIcacaGLPaaajugibiaai2dacaWGnbGcdaqadaqaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWG1bGaaGikaiaadshacaaIPaaakeaajugibiaadAhacaaIOaGaamiDaiaaiMcaaaaakiaawIcacaGLPaaajugibiabgUcaROWaaeWaaeaajugibuaabeqaceaaaOqaaKqzGeGaeyOeI0IaeqOSdiMaamyDaiaaiIcacaWG0bGaaGykaiaadAhacaaIOaGaamiDaiaaiMcaaOqaaKqzGeGaeyOeI0Iaeq4SdCMaey4kaSIaeqOSdiMaamyDaiaaiIcacaWG0bGaaGykaiaadAhacaaIOaGaamiDaiaaiMcaaaaakiaawIcacaGLPaaajugibiaaiYcacaWGnbGaaGypaOWaaeWaaeaajugibuaabeqaciaaaOqaaKqzGeGaeq4UdWMaeyOeI0IaeqiVd0McdaWgaaWcbaqcLbsacaaIXaaaleqaaaGcbaqcLbsacaaIWaaakeaajugibiaaicdaaOqaaKqzGeGaeyOeI0IaeqiVd0McdaWgaaWcbaqcLbsacaaIYaaaleqaaaaaaOGaayjkaiaawMcaaKqzGeGaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeinaiaabMdacaqGPaaaaa@8D0F@

The iteration scheme of (49) is,

U (n) (t)=( u 0 v 0 )+ 0 t e M t 1 ( β u (n1) ( t 1 ) v (n1) ( t 1 ) γ+β u (n1) ( t 1 ) v (n1) ( t 1 ) )d t 1 ,n1.        (50) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeqabaaakeaajugibiaadwfakmaaCaaaleqabaqcLbsacaaIOaGaamOBaiaaiMcaaaGaaGikaiaadshacaaIPaGaaGypaOWaaeWaaeaajugibuaabeqaceaaaOqaaKqzGeGaamyDaOWaaSbaaSqaaKqzGeGaaGimaaWcbeaaaOqaaKqzGeGaamODaOWaaSbaaSqaaKqzGeGaaGimaaWcbeaaaaaakiaawIcacaGLPaaajugibiabgUcaROWaa8qmaeqaleaajugibiaaicdaaSqaaKqzGeGaamiDaaGaey4kIipacaWGLbGcdaahaaWcbeqaaKqzGeGaeyOeI0IaamytaiaadshakmaaBaaaleaajugibiaaigdaaSqabaaaaOWaaeWaaeaajugibuaabeqaceaaaOqaaKqzGeGaeyOeI0IaeqOSdiMaamyDaOWaaWbaaSqabeaajugibiaaiIcacaWGUbGaeyOeI0IaaGymaiaaiMcaaaGaaGikaiaadshakmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaIPaGaamODaOWaaWbaaSqabeaajugibiaaiIcacaWGUbGaeyOeI0IaaGymaiaaiMcaaaGaaGikaiaadshakmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaIPaaakeaajugibiabgkHiTiabeo7aNjabgUcaRiabek7aIjaadwhakmaaCaaaleqabaqcLbsacaaIOaGaamOBaiabgkHiTiaaigdacaaIPaaaaiaaiIcacaWG0bGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGykaiaadAhakmaaCaaaleqabaqcLbsacaaIOaGaamOBaiabgkHiTiaaigdacaaIPaaaaiaaiIcacaWG0bGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGykaaaaaOGaayjkaiaawMcaaKqzGeGaamizaiaadshakmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaISaGaamOBaiabgwMiZkaaigdacaaIUaaaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeynaiaabcdacaqGPaaaaa@99C5@

Now, we prove the convergence theorem. To this issue, we present the following.

We write U (n) ={ U i (n) ,i=1,2,3}, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGvbGcdaahaaWcbeqaaKqzGeGaaGikaiaad6gacaaIPaaaaiaai2dacaaI7bGaamyvaOWaa0baaSqaaKqzGeGaamyAaaWcbaqcLbsacaaIOaGaamOBaiaaiMcaaaGaaGilaiaadMgacaaI9aGaaGymaiaaiYcacaaIYaGaaGilaiaaiodacaaI9bGaaGilaaaa@4B9F@ where U (n) =Ma x i=1,2,3 U i (n) ,  U i (n) =Su p tϵ + | U (n) (t)| MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFLicucaWGvbGcdaahaaWcbeqaaKqzGeGaaGikaiaad6gacaaIPaaaaiab=vIiqjaai2dacaWGnbGaamyyaiaadIhakmaaBaaaleaajugibiaadMgacaaI9aGaaGymaiaaiYcacaaIYaGaaGilaiaaiodaaSqabaqcLbsacqWFLicucaWGvbGcdaqhaaWcbaqcLbsacaWGPbaaleaajugibiaaiIcacaWGUbGaaGykaaaacqWFLicucaaISaGaaeiiaiab=vIiqjaadwfakmaaDaaaleaajugibiaadMgaaSqaaKqzGeGaaGikaiaad6gacaaIPaaaaiab=vIiqjaai2dacaWGtbGaamyDaiaadchakmaaBaaaleaajugibiaadshatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGGbciab+v=aYprr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbachaGae0xhHiLcdaahaaWcbeqaaKqzGeGaey4kaScaaaWcbeaajugibiaacYhacaWGvbGcdaahaaWcbeqaaKqzGeGaaGikaiaad6gacaaIPaaaaiaaiIcacaWG0bGaaGykaiaacYhaaaa@84F0@

We assume that the space of solutions S={ U i (n) : U i (n) ϵ C 1 ( + ),,i=1,2,3,nϵ} MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtbGaaGypaiaaiUhacaWGvbGcdaqhaaWcbaqcLbsacaWGPbaaleaajugibiaaiIcacaWGUbGaaGykaaaacaaI6aGaamyvaOWaa0baaSqaaKqzGeGaamyAaaWcbaqcLbsacaaIOaGaamOBaiaaiMcaaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8caWGdbGcdaahaaWcbeqaaKqzGeGaaGymaaaacaaIOaWefv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiyaacqGFDeIukmaaCaaaleqabaqcLbsacqGHRaWkaaGaaGykaiaaiYcacaaMc8UaaGilaiaadMgacaaI9aGaaGymaiaaiYcacaaIYaGaaGilaiaaiodacaaISaGaaGjcVlaad6gacqWF1pG8cqGFveItcaaMc8UaaGjcVlaai2haaaa@7625@ is endowed by the norm

S=Ma x i U i (n) , U i (n) =Su p tϵ + | U i (n) (t)| MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFLicucaWGtbGae8xjIaLaaGypaiaad2eacaWGHbGaamiEaOWaaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiab=vIiqjaadwfakmaaDaaaleaajugibiaadMgaaSqaaKqzGeGaaGikaiaad6gacaaIPaaaaiab=vIiqjaaiYcacqWFLicucaWGvbGcdaqhaaWcbaqcLbsacaWGPbaaleaajugibiaaiIcacaWGUbGaaGykaaaacqWFLicucaaI9aGaam4uaiaadwhacaWGWbGcdaWgaaWcbaqcLbsacaWG0bWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiyGacqGF1pG8tuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGWbaiab91risPWaaWbaaSqabeaajugibiabgUcaRaaaaSqabaqcLbsacaGG8bGaamyvaOWaa0baaSqaaKqzGeGaamyAaaWcbaqcLbsacaaIOaGaamOBaiaaiMcaaaGaaGikaiaadshacaaIPaGaaiiFaaaa@7E4E@ ) (cf. (47)).

Define the mapping M ˜ :SS;M( u i (n1) (t))= u i (n) (t). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGnbGbaGaacaaI6aGaam4uaiabgkziUkaadofacaGG7aGaamytaiaaiIcacaWG1bGcdaqhaaWcbaqcLbsacaWGPbaaleaajugibiaaiIcacaWGUbGaeyOeI0IaaGymaiaaiMcaaaGaaGikaiaadshacaaIPaGaaGykaiaai2dacaWG1bGcdaqhaaWcbaqcLbsacaWGPbaaleaajugibiaaiIcacaWGUbGaaGykaaaacaaIOaGaamiDaiaaiMcacaGGUaaaaa@53E8@ We proceed with the proof of the convergence theorem by the following.

The logarithmic norm of a matrix M, which is defined by,

μ(M)=Limi t δ0 I+δM1 δ ,      (51) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8oqBcaaIOaGaamytaiaaiMcacaaI9aGaamitaiaadMgacaWGTbGaamyAaiaadshakmaaBaaaleaajugibiabes7aKjabgkziUkaaicdaaSqabaqcLbsacaaMe8UcdaWcaaqaaebbfv3ySLgzGueE0jxyaGqbaKqzGeGae8xjIaLaamysaiabgUcaRiabes7aKjaad2eacqWFLicucqGHsislcaaIXaaakeaajugibiabes7aKbaacaaISaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabwdacaqGXaGaaeykaaaa@5FEC@

Where, M MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFLicucaWGnbGae8xjIafaaa@4039@ is the matrix norm. Here, we consider M =Ma x 1in ( j=1 j=n | m ij |) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFLicucaWGnbGae8xjIaLcdaWgaaWcbaqcLbsacqGHEisPaSqabaqcLbsacaaI9aGaamytaiaadggacaWG4bGcdaWgaaWcbaqcLbsacaaIXaGaeyizImQaamyAaiabgsMiJkaad6gaaSqabaqcLbsacaaIOaGcdaaeWaqabSqaaOWaaSbaaSqaaKqzGeGaamOAaiaai2dacaaIXaaaleqaaaqaaKqzGeGaamOAaiaai2dacaWGUbaacqGHris5aiaacYhacaWGTbGcdaWgaaWcbaGcdaWgaaWcbaqcLbsacaWGPbGaamOAaaWcbeaaaeqaaKqzGeGaaiiFaiaaiMcaaaa@5E2C@

Lemma: The norm of exponential matrix M m×m =( m ij ), i,j=1,...,m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnbGcdaWgaaWcbaqcLbsacaWGTbGaey41aqRaamyBaaWcbeaajugibiaai2dacaaIOaGaamyBaOWaaSbaaSqaaKqzGeGaamyAaiaadQgaaSqabaqcLbsacaGGPaGaaiilaiaabccacaWGPbGaaiilaiaadQgacaqG9aGaaeymaiaabYcacaqGUaGaaeOlaiaab6cacaqGSaGaamyBaaaa@4ECA@ satisfies [45,46],

exp(tM) <exp(t μ (M)),     (52) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFLicucaWGLbGaamiEaiaadchacaaIOaGaeyOeI0IaamiDaiaad2eacaaIPaGae8xjIaLcdaWgaaWcbaqcLbsacqGHEisPaSqabaqcLbsacaaI8aGaamyzaiaadIhacaWGWbGaaGikaiabgkHiTiaadshacqaH8oqBkmaaBaaaleaajugibiabg6HiLcWcbeaajugibiaaiIcacaWGnbGaaGykaiaaiMcacaaISaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeynaiaabkdacaqGPaaaaa@5D83@

Where μ (M)=Ma x i (| m ii |+ j=1,ji j=m | m ij |) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8oqBkmaaBaaaleaajugibiabg6HiLcWcbeaajugibiaaiIcacaWGnbGaaGykaiaai2dacaWGnbGaamyyaiaadIhakmaaBaaaleaajugibiaadMgaaSqabaqcLbsacaaIOaGaaiiFaiaad2gakmaaBaaaleaajugibiaadMgacaWGPbaaleqaaKqzGeGaaiiFaiabgUcaROWaaabmaeqaleaajugibiaadQgacaaI9aGaaGymaiaaiYcacaWGQbGaeyiyIKRaamyAaaWcbaqcLbsacaWGQbGaaGypaiaad2gaaiabggHiLdGaaiiFaiaad2gakmaaBaaaleaajugibiaadMgacaWGQbaaleqaaKqzGeGaaiiFaiaaiMcaaaa@6057@ .

Theorem: The sequence of solutions u(n) converges absolutely to the exact solution black U as n →∞. as

Proof. By using (49), (50), and the lemma, we have,

U (1) U (0) < 0 t e M t 1 ( β u (0) v (0) γ+β u (0) v (0) )d t 1 < 0 t e M t 1 ( α u (0) v (0) γ+α u (0) v (0) )d t 1 < 0 t e μ(M) ( β u (0) v (0) γ+β u (0) v (0) )d t 1 = 0 t e (|λ μ 1 |+| μ 2 |) t 1 ( β u (0) v (0) γ+β u (0) v (0) )d t 1 .         (53) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeqbbaaaaOqaaebbfv3ySLgzGueE0jxyaGqbaKqzGeGae8xjIaLaamyvaOWaaWbaaSqabeaajugibiaaiIcacaaIXaGaaGykaaaacqGHsislcaWGvbGcdaahaaWcbeqaaKqzGeGaaGikaiaaicdacaaIPaaaaiab=vIiqjaaiYdacqWFLicukmaapedabeWcbaqcLbsacaaIWaaaleaajugibiaadshaaiabgUIiYdGaamyzaOWaaWbaaSqabeaajugibiabgkHiTiaad2eacaWG0bGcdaWgaaWcbaqcLbsacaaIXaaaleqaaaaakmaabmaabaqcLbsafaqabeGabaaakeaajugibiabgkHiTiabek7aIjaadwhakmaaCaaaleqabaqcLbsacaaIOaGaaGimaiaaiMcaaaGaamODaOWaaWbaaSqabeaajugibiaaiIcacaaIWaGaaGykaaaaaOqaaKqzGeGaeq4SdCMaey4kaSIaeqOSdiMaamyDaOWaaWbaaSqabeaajugibiaaiIcacaaIWaGaaGykaaaacaWG2bGcdaahaaWcbeqaaKqzGeGaaGikaiaaicdacaaIPaaaaaaaaOGaayjkaiaawMcaaKqzGeGaamizaiaadshakmaaBaaaleaajugibiaaigdaaSqabaqcLbsacqWFLicucaaI8aaakeaaaeaadaWdXaqabSqaaKqzGeGaaGimaaWcbaqcLbsacaWG0baacqGHRiI8aiab=vIiqjaadwgakmaaCaaaleqabaqcLbsacqGHsislcaWGnbGaamiDaOWaaSbaaSqaaKqzGeGaaGymaaWcbeaaaaqcLbsacqWFLicucqWFLicukmaabmaabaqcLbsafaqabeGabaaakeaajugibiabgkHiTiabeg7aHjaadwhakmaaCaaaleqabaqcLbsacaaIOaGaaGimaiaaiMcaaaGaamODaOWaaWbaaSqabeaajugibiaaiIcacaaIWaGaaGykaaaaaOqaaKqzGeGaeq4SdCMaey4kaSIaeqySdeMaamyDaOWaaWbaaSqabeaajugibiaaiIcacaaIWaGaaGykaaaacaWG2bGcdaahaaWcbeqaaKqzGeGaaGikaiaaicdacaaIPaaaaaaaaOGaayjkaiaawMcaaKqzGeGae8xjIaLaamizaiaadshakmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaI8aGcdaWdXaqabSqaaKqzGeGaaGimaaWcbaqcLbsacaWG0baacqGHRiI8aiab=vIiqjaadwgakmaaCaaaleqabaqcLbsacqGHsislcqaH8oqBcaaIOaGaamytaiaaiMcaaaGae8xjIaLae8xjIaLcdaqadaqaaKqzGeqbaeqabiqaaaGcbaqcLbsacqGHsislcqaHYoGycaWG1bGcdaahaaWcbeqaaKqzGeGaaGikaiaaicdacaaIPaaaaiaadAhakmaaCaaaleqabaqcLbsacaaIOaGaaGimaiaaiMcaaaaakeaajugibiabeo7aNjabgUcaRiabek7aIjaadwhakmaaCaaaleqabaqcLbsacaaIOaGaaGimaiaaiMcaaaGaamODaOWaaWbaaSqabeaajugibiaaiIcacaaIWaGaaGykaaaaaaaakiaawIcacaGLPaaajugibiab=vIiqjaadsgacaWG0bGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGypaaGcbaaabaWaa8qmaeqaleaajugibiaaicdaaSqaaKqzGeGaamiDaaGaey4kIipacaWGLbGcdaahaaWcbeqaaKqzGeGaeyOeI0IaaGikaiaacYhacqaH7oaBcqGHsislcqaH8oqBkmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaGG8bGaey4kaSIaaiiFaiabeY7aTPWaaSbaaSqaaKqzGeGaaGOmaaWcbeaajugibiaacYhacaaIPaGaamiDaOWaaSbaaSqaaKqzGeGaaGymaaWcbeaaaaqcLbsacqWFLicukmaabmaabaqcLbsafaqabeGabaaakeaajugibiabgkHiTiabek7aIjaadwhakmaaCaaaleqabaqcLbsacaaIOaGaaGimaiaaiMcaaaGaamODaOWaaWbaaSqabeaajugibiaaiIcacaaIWaGaaGykaaaaaOqaaKqzGeGaeq4SdCMaey4kaSIaeqOSdiMaamyDaOWaaWbaaSqabeaajugibiaaiIcacaaIWaGaaGykaaaacaWG2bGcdaahaaWcbeqaaKqzGeGaaGikaiaaicdacaaIPaaaaaaaaOGaayjkaiaawMcaaKqzGeGae8xjIaLaamizaiaadshakmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaIUaaaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabwdacaqGZaGaaeykaaaa@176D@

From (53), there exist ε0 < 1 and T0 such that,

U (1) U (0) < ε 0 <1, t> T 0 .      (54) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamyvamaaCaaaleqabaGaaGikaiaaigdacaaIPaaaaOGaeyOeI0IaamyvamaaCaaaleqabaGaaGikaiaaicdacaaIPaaaaOGae8xjIaLaaGipaiabew7aLnaaBaaaleaacaaIWaaabeaakiaaiYdacaaIXaGaaGilaiaabccacaWG0bGaaGOpaiaadsfadaWgaaWcbaGaaGimaaqabaGccaaIUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabwdacaqG0aGaaeykaaaa@5737@

Define a mapping M ˜ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGnbGbaGaaaaa@3974@ with M ˜ ( U (i) )= U (i+1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGnbGbaGaacaaIOaGaamyvaOWaaWbaaSqabeaajugibiaaiIcacaWGPbGaaGykaaaacaaIPaGaaGypaiaadwfakmaaCaaaleqabaqcLbsacaaIOaGaamyAaiabgUcaRiaaigdacaaIPaaaaaaa@4523@

In the same way for U (2) U (1) = M ˜ ( U (1 ) M ˜ ( U (0) ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFLicucaWGvbGcdaahaaWcbeqaaKqzGeGaaGikaiaaikdacaaIPaaaaiabgkHiTiaadwfakmaaCaaaleqabaqcLbsacaaIOaGaaGymaiaaiMcaaaGae8xjIaLaaGypaiab=vIiqjqad2eagaacaiaaiIcacaWGvbGcdaahaaWcbeqaaKqzGeGaaGikaiaaigdaaaGaaGykaiabgkHiTiqad2eagaacaiaaiIcacaWGvbGcdaahaaWcbeqaaKqzGeGaaGikaiaaicdacaaIPaaaaiaaiMcacqWFLicuaaa@5719@ it holds that there exists ε1 < 1 and T1 such that,

M ˜ ( U (1) ) M ˜ ( U (0) )< ε 1 <1, t> T 1 ,      (55) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFLicuceWGnbGbaGaacaaIOaGaamyvaOWaaWbaaSqabeaajugibiaaiIcacaaIXaGaaGykaaaacaaIPaGaeyOeI0IabmytayaaiaGaaGikaiaadwfakmaaCaaaleqabaqcLbsacaaIOaGaaGimaiaaiMcaaaGaaGykaiab=vIiqjaaiYdacqaH1oqzkmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaI8aGaaGymaiaaiYcacaqGGaGaamiDaiaai6dacaWGubGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGilaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqG1aGaaeynaiaabMcaaaa@5FC3@

and by induction, it holds that,

M ˜ ( U (n) ) M ˜ ( U n1) )< ε n <1, t> T n .     (56) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFLicuceWGnbGbaGaacaaIOaGaamyvaOWaaWbaaSqabeaajugibiaaiIcacaWGUbGaaGykaaaacaaIPaGaeyOeI0IabmytayaaiaGaaGikaiaadwfakmaaCaaaleqabaqcLbsacaWGUbGaeyOeI0IaaGymaiaaiMcaaaGaaGykaiab=vIiqjaaiYdacqaH1oqzkmaaBaaaleaajugibiaad6gaaSqabaqcLbsacaaI8aGaaGymaiaaiYcacaqGGaGaamiDaiaai6dacaWGubGcdaWgaaWcbaqcLbsacaWGUbaaleqaaKqzGeGaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabwdacaqG2aGaaeykaaaa@60FA@

From (54)-(56), there exist ϵ=Mi n j ε j MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGajugibiab=v=aYlaai2dacaWGnbGaamyAaiaad6gakmaaBaaaleaajugibiaadQgaaSqabaqcLbsacqaH1oqzkmaaBaaaleaajugibiaadQgaaSqabaaaaa@4DBC@ and T=Ma x j T j MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGubGaaGypaiaad2eacaWGHbGaamiEaOWaaSbaaSqaaKqzGeGaamOAaaWcbeaajugibiaadsfakmaaBaaaleaajugibiaadQgaaSqabaaaaa@41CE@ such that,

M ˜ ( U (n) ) M ˜ ( U n1) )<ε<1, t>T.       (57) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKbsr4rNCHbacfaqcLbsacqWFLicuceWGnbGbaGaacaaIOaGaamyvaOWaaWbaaSqabeaajugibiaaiIcacaWGUbGaaGykaaaacaaIPaGaeyOeI0IabmytayaaiaGaaGikaiaadwfakmaaCaaaleqabaqcLbsacaWGUbGaeyOeI0IaaGymaiaaiMcaaaGaaGykaiab=vIiqjaaiYdacqaH1oqzcaaI8aGaaGymaiaaiYcacaqGGaGaamiDaiaai6dacaWGubGaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeynaiaabEdacaqGPaaaaa@5D9D@

Thus, M ˜ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGnbGbaGaaaaa@3974@ is a contraction mapping. This completes the proof .

Corollary. The sequence of solutions u(n) converges absolutely on [0,T] to the exact solution u of (3).

By using (6), the results in (48) are displayed in Figures. 3(i) and (ii).

When β=0.05, u0 = 5000, v0 = 100, µ1 = 0.01, µ2 = 0.005,γ = 0.001, λ = 0.5.

After Figures 3 (i) and (ii), we find that the solutions u(t) and v(t) decay with α when 0α when t>1 A global behavior of the density of the two species is to decay with time.

6. Quadratic invariant

Here, we are concerned with constructing a quadratic invariant (QI) for (56), which is a quadratic polynomial in u′(t) and v′(t) and it leads to the Hamiltonian function. Indeed, a QI for the dynamical system,

u (t)=λ(1u(t))u(t) μ 1 u(t)βu(t)v(t), v (t)=γ+βu(t)v(t) μ 2 v(t),       (58) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeGabaaakeaajugibiqadwhagaqbaiaaiIcacaWG0bGaaGykaiaab2dacqaH7oaBcaaIOaGaaGymaiabgkHiTiaadwhacaaIOaGaamiDaiaaiMcacaaIPaGaamyDaiaaiIcacaWG0bGaaGykaiabgkHiTiabeY7aTPWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaadwhacaaIOaGaamiDaiaaiMcacqGHsislcqaHYoGycaWG1bGaaGikaiaadshacaaIPaGaamODaiaaiIcacaWG0bGaaGykaiaaiYcaaOqaaKqzGeGabmODayaafaGaaGikaiaadshacaaIPaGaaeypaiabgkHiTiabeo7aNjabgUcaRiabek7aIjaadwhacaaIOaGaamiDaiaaiMcacaWG2bGaaGikaiaadshacaaIPaGaeyOeI0IaeqiVd0McdaWgaaWcbaqcLbsacaaIYaaaleqaaKqzGeGaamODaiaaiIcacaWG0bGaaGykaiaaiYcaaaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabwdacaqG4aGaaeykaaaa@7AC7@

undergoes the form,

A 5 u 2 + A 4 u v + A 3 v 2 + A 2 (u,v) u + A 1 (u,v) v + A 0 (u,v)=0.      (59) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbbGcdaWgaaWcbaqcLbsacaaI1aaaleqaaKqzGeGabmyDayaafaGcdaahaaWcbeqaaKqzGeGaaGOmaaaacqGHRaWkcaWGbbGcdaWgaaWcbaqcLbsacaaI0aaaleqaaKqzGeGabmyDayaafaGabmODayaafaGaey4kaSIaamyqaOWaaSbaaSqaaKqzGeGaaG4maaWcbeaajugibiqadAhagaqbaOWaaWbaaSqabeaajugibiaaikdaaaGaey4kaSIaamyqaOWaaSbaaSqaaKqzGeGaaGOmaaWcbeaajugibiaaiIcacaWG1bGaaGilaiaadAhacaaIPaGabmyDayaafaGaey4kaSIaamyqaOWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaaiIcacaWG1bGaaGilaiaadAhacaaIPaGabmODayaafaGaey4kaSIaamyqaOWaaSbaaSqaaKqzGeGaaGimaaWcbeaajugibiaaiIcacaWG1bGaaGilaiaadAhacaaIPaGaaGypaiaaicdacaaIUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabwdacaqG5aGaaeykaaaa@6C77@

Eq. (75) is rewritten,

u =λ(12u) u μ 1 u βv u βu v , v =βv u +βu v μ 2 v .        (60) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeGabaaakeaajugibiqadwhagaqbgaqbaiaab2dacqaH7oaBcaaIOaGaaGymaiabgkHiTiaaikdacaWG1bGaaGykaiqadwhagaqbaiabgkHiTiabeY7aTPWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiqadwhagaqbaiabgkHiTiabek7aIjaadAhaceWG1bGbauaacqGHsislcqaHYoGycaWG1bGabmODayaafaGaaGilaaGcbaqcLbsaceWG2bGbauGbauaacaaI9aGaeqOSdiMaamODaiqadwhagaqbaiabgUcaRiabek7aIjaadwhaceWG2bGbauaacqGHsislcqaH8oqBkmaaBaaaleaajugibiaaikdaaSqabaqcLbsaceWG2bGbauaacaaIUaaaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOnaiaabcdacaqGPaaaaa@6A6B@

By differentiating (76), using (77), and by setting the coefficients of u′j v′i,i,j = 0,1,2 equal to zero, we get,

A 2u (u,v)=2 A 5 λ+2 A 5 μ 1 +4 A 5 λu+2 A 5 βv A 4 βv, A 1u (u,v)= A 4 (λ)+ A 4 μ 1 + A 4 μ 2 A 4 βu+2 A 5 βu+2 A 4 λu A 2v (u,v)2 A 3 βv+ A 4 βv, A 0u (u,v)=βv A 1 (u,v)λ A 2 (u,v)βv+ A 2 (u,v)+ 2λu A 2 (u,v)+ μ 1 A 2 (u,v), A 1v (u,v)=2 A 3 μ 2 2 A 3 βu+ A 4 βu, A 0v (u,v)=βu A 1 (u,v+βu A 2 (u,v)+ μ 2 A 1 (u,v).       (61) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeWbbaaaaOqaaKqzGeGaamyqaOWaaSbaaSqaaKqzGeGaaGOmaiaadwhaaSqabaqcLbsacaaIOaGaamyDaiaaiYcacaWG2bGaaGykaiaab2dacqGHsislcaaIYaGaamyqaOWaaSbaaSqaaKqzGeGaaGynaaWcbeaajugibiabeU7aSjabgUcaRiaaikdacaWGbbGcdaWgaaWcbaqcLbsacaaI1aaaleqaaKqzGeGaeqiVd0McdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaey4kaSIaaGinaiaadgeakmaaBaaaleaajugibiaaiwdaaSqabaqcLbsacqaH7oaBcaWG1bGaey4kaSIaaGOmaiaadgeakmaaBaaaleaajugibiaaiwdaaSqabaqcLbsacqaHYoGycaWG2bGaeyOeI0IaamyqaOWaaSbaaSqaaKqzGeGaaGinaaWcbeaajugibiabek7aIjaadAhacaaISaaakeaajugibiaadgeakmaaBaaaleaajugibiaaigdacaWG1baaleqaaKqzGeGaaGikaiaadwhacaaISaGaamODaiaaiMcacaqG9aGaamyqaOWaaSbaaSqaaKqzGeGaaGinaaWcbeaajugibiaaiIcacqGHsislcqaH7oaBcaaIPaGaey4kaSIaamyqaOWaaSbaaSqaaKqzGeGaaGinaaWcbeaajugibiabeY7aTPWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiabgUcaRiaadgeakmaaBaaaleaajugibiaaisdaaSqabaqcLbsacqaH8oqBkmaaBaaaleaajugibiaaikdaaSqabaqcLbsacqGHsislcaWGbbGcdaWgaaWcbaqcLbsacaaI0aaaleqaaKqzGeGaeqOSdiMaamyDaiabgUcaRiaaikdacaWGbbGcdaWgaaWcbaqcLbsacaaI1aaaleqaaKqzGeGaeqOSdiMaamyDaiabgUcaRiaaikdacaWGbbGcdaWgaaWcbaqcLbsacaaI0aaaleqaaKqzGeGaeq4UdWMaamyDaaGcbaqcLbsacqGHsislcaWGbbGcdaWgaaWcbaqcLbsacaaIYaGaamODaaWcbeaajugibiaaiIcacaWG1bGaaGilaiaadAhacaaIPaGaeyOeI0IaaGOmaiaadgeakmaaBaaaleaajugibiaaiodaaSqabaqcLbsacqaHYoGycaWG2bGaey4kaSIaamyqaOWaaSbaaSqaaKqzGeGaaGinaaWcbeaajugibiabek7aIjaadAhacaaISaaakeaajugibiaadgeakmaaBaaaleaajugibiaaicdacaWG1baaleqaaKqzGeGaaGikaiaadwhacaaISaGaamODaiaaiMcacaqG9aGaeyOeI0IaeqOSdiMaamODaiaadgeakmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaIOaGaamyDaiaaiYcacaWG2bGaaGykaiabgkHiTiabeU7aSjaadgeakmaaBaaaleaajugibiaaikdaaSqabaqcLbsacaaIOaGaamyDaiaaiYcacaWG2bGaaGykaiabek7aIjaadAhacqGHRaWkcaWGbbGcdaWgaaWcbaqcLbsacaaIYaaaleqaaKqzGeGaaGikaiaadwhacaaISaGaamODaiaaiMcacqGHRaWkaOqaaKqzGeGaaGOmaiabeU7aSjaadwhacaWGbbGcdaWgaaWcbaqcLbsacaaIYaaaleqaaKqzGeGaaGikaiaadwhacaaISaGaamODaiaaiMcacqGHRaWkcqaH8oqBkmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaWGbbGcdaWgaaWcbaqcLbsacaaIYaaaleqaaKqzGeGaaGikaiaadwhacaaISaGaamODaiaaiMcacaaISaaakeaajugibiaadgeakmaaBaaaleaajugibiaaigdacaWG2baaleqaaKqzGeGaaGikaiaadwhacaaISaGaamODaiaaiMcacaqG9aGaaGOmaiaadgeakmaaBaaaleaajugibiaaiodaaSqabaqcLbsacqaH8oqBkmaaBaaaleaajugibiaaikdaaSqabaqcLbsacqGHsislcaaIYaGaamyqaOWaaSbaaSqaaKqzGeGaaG4maaWcbeaajugibiabek7aIjaadwhacqGHRaWkcaWGbbGcdaWgaaWcbaqcLbsacaaI0aaaleqaaKqzGeGaeqOSdiMaamyDaiaaiYcaaOqaaKqzGeGaamyqaOWaaSbaaSqaaKqzGeGaaGimaiaadAhaaSqabaqcLbsacaaIOaGaamyDaiaaiYcacaWG2bGaaGykaiaab2dacqGHsislcqaHYoGycaWG1bGaamyqaOWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaaiIcacaWG1bGaaGilaiaadAhacqGHRaWkcqaHYoGycaWG1bGaamyqaOWaaSbaaSqaaKqzGeGaaGOmaaWcbeaajugibiaaiIcacaWG1bGaaGilaiaadAhacaaIPaGaey4kaSIaeqiVd0McdaWgaaWcbaqcLbsacaaIYaaaleqaaKqzGeGaamyqaOWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaaiIcacaWG1bGaaGilaiaadAhacaaIPaGaaGOlaaaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOnaiaabgdacaqGPaaaaa@40F2@

Calculations give rise to,

A 2 (u,v)=v(t)( B 1 A 4 βu )+2 A 5 u( λ+ μ 1 +λu+βv )+ B 0 , A 1 (u,v)= B 2 A 5 β u 2 +2 A 3 μ 2 v2 A 3 βuv+ 1 2 A 4 u( 2λ+2 μ 1 +2 μ 2 +βu+2λu+2βv) B 1 u, A 0 (u,v)= C 0 + B 2 μ 2 v2 A 3 μ 2 2 v 2 + 1 2 u(t)( 2 B 0 ( λ+ μ 1 +λu+βv ) +2 A 5 ( λ 2 u 3 2λ( λ μ 1 ) u 2 +2 μ 2 v( λ+ μ 1 +βv ) +u( λ 2 2λ μ 1 + μ 1 2 β 2 v 2 μ 2 (β2λ)v ) ) +βv( 2 A 5 μ 2 u+2 A 3 v(t)( βu2 μ 2 )2 B 2 ) ).        (62) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeWbbaaaaOqaaKqzGeGaamyqaOWaaSbaaSqaaKqzGeGaaGOmaaWcbeaajugibiaaiIcacaWG1bGaaGilaiaadAhacaaIPaGaaGypaiaadAhacaaIOaGaamiDaiaaiMcakmaabmaabaqcLbsacaWGcbGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaeyOeI0IaamyqaOWaaSbaaSqaaKqzGeGaaGinaaWcbeaajugibiabek7aIjaadwhaaOGaayjkaiaawMcaaKqzGeGaey4kaSIaaGOmaiaadgeakmaaBaaaleaajugibiaaiwdaaSqabaqcLbsacaWG1bGcdaqadaqaaKqzGeGaeyOeI0Iaeq4UdWMaey4kaSIaeqiVd0McdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaey4kaSIaeq4UdWMaamyDaiabgUcaRiabek7aIjaadAhaaOGaayjkaiaawMcaaKqzGeGaey4kaSIaamOqaOWaaSbaaSqaaKqzGeGaaGimaaWcbeaajugibiaaiYcaaOqaaKqzGeGaamyqaOWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaaiIcacaWG1bGaaGilaiaadAhacaaIPaGaaGypaiaadkeakmaaBaaaleaajugibiaaikdaaSqabaqcLbsacqGHsislcaWGbbGcdaWgaaWcbaqcLbsacaaI1aaaleqaaKqzGeGaeqOSdiMaamyDaOWaaWbaaSqabeaajugibiaaikdaaaGaey4kaSIaaGOmaiaadgeakmaaBaaaleaajugibiaaiodaaSqabaqcLbsacqaH8oqBkmaaBaaaleaajugibiaaikdaaSqabaqcLbsacaWG2bGaeyOeI0IaaGOmaiaadgeakmaaBaaaleaajugibiaaiodaaSqabaqcLbsacqaHYoGycaWG1bGaamODaiabgUcaROWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaGOmaaaacaWGbbGcdaWgaaWcbaqcLbsacaaI0aaaleqaaKqzGeGaamyDaOWaaeqaaeaajugibiabgkHiTiaaikdacqaH7oaBcqGHRaWkcaaIYaGaeqiVd0McdaWgaaWcbaqcLbsacaaIXaaaleqaaaGccaGLOaaaaeaajugibiabgUcaRiaaikdacqaH8oqBkmaaBaaaleaajugibiaaikdaaSqabaqcLbsacqGHRaWkcqaHYoGycaWG1bGaey4kaSIaaGOmaiabeU7aSjaadwhacqGHRaWkcaaIYaGaeqOSdiMaamODaiaaiMcacqGHsislcaWGcbGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaamyDaiaaiYcaaOqaaKqzGeGaamyqaOWaaSbaaSqaaKqzGeGaaGimaaWcbeaajugibiaaiIcacaWG1bGaaGilaiaadAhacaaIPaGaaeypaiabgkHiTiaadoeakmaaBaaaleaajugibiaaicdaaSqabaqcLbsacqGHRaWkcaWGcbGcdaWgaaWcbaqcLbsacaaIYaaaleqaaKqzGeGaeqiVd0McdaWgaaWcbaqcLbsacaaIYaaaleqaaKqzGeGaamODaiabgkHiTiaaikdacaWGbbGcdaWgaaWcbaqcLbsacaaIZaaaleqaaKqzGeGaeqiVd0McdaqhaaWcbaqcLbsacaaIYaaaleaajugibiaaikdaaaGaamODaOWaaWbaaSqabeaajugibiaaikdaaaGaey4kaSIcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaIYaaaaiaadwhacaaIOaGaamiDaiaaiMcakmaabeaabaqcLbsacaaIYaGaamOqaOWaaSbaaSqaaKqzGeGaaGimaaWcbeaakmaabmaabaqcLbsacqGHsislcqaH7oaBcqGHRaWkcqaH8oqBkmaaBaaaleaajugibiaaigdaaSqabaqcLbsacqGHRaWkcqaH7oaBcaWG1bGaey4kaSIaeqOSdiMaamODaaGccaGLOaGaayzkaaaacaGLOaaaaeaajugibiabgUcaRiaaikdacaWGbbGcdaWgaaWcbaqcLbsacaaI1aaaleqaaOWaaeqaaeaajugibiabeU7aSPWaaWbaaSqabeaajugibiaaikdaaaGaamyDaOWaaWbaaSqabeaajugibiaaiodaaaGaeyOeI0IaaGOmaiabeU7aSPWaaeWaaeaajugibiabeU7aSjabgkHiTiabeY7aTPWaaSbaaSqaaKqzGeGaaGymaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaamyDaOWaaWbaaSqabeaajugibiaaikdaaaGaey4kaSIaaGOmaiabeY7aTPWaaSbaaSqaaKqzGeGaaGOmaaWcbeaajugibiaadAhakmaabmaabaqcLbsacqGHsislcqaH7oaBcqGHRaWkcqaH8oqBkmaaBaaaleaajugibiaaigdaaSqabaqcLbsacqGHRaWkcqaHYoGycaWG2baakiaawIcacaGLPaaaaiaawIcaaaqaamaabiaabaqcLbsacqGHRaWkcaWG1bGcdaqadaqaaKqzGeGaeq4UdWMcdaahaaWcbeqaaKqzGeGaaGOmaaaacqGHsislcaaIYaGaeq4UdWMaeqiVd0McdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaey4kaSIaeqiVd0McdaqhaaWcbaqcLbsacaaIXaaaleaajugibiaaikdaaaGaeyOeI0IaeqOSdiMcdaahaaWcbeqaaKqzGeGaaGOmaaaacaWG2bGcdaahaaWcbeqaaKqzGeGaaGOmaaaacqGHsislcqaH8oqBkmaaBaaaleaajugibiaaikdaaSqabaqcLbsacaaIOaGaeqOSdiMaeyOeI0IaaGOmaiabeU7aSjaaiMcacaWG2baakiaawIcacaGLPaaaaiaawMcaaaqaamaabiaabaqcLbsacqGHRaWkcqaHYoGycaWG2bGcdaqadaqaaKqzGeGaaGOmaiaadgeakmaaBaaaleaajugibiaaiwdaaSqabaqcLbsacqaH8oqBkmaaBaaaleaajugibiaaikdaaSqabaqcLbsacaWG1bGaey4kaSIaaGOmaiaadgeakmaaBaaaleaajugibiaaiodaaSqabaqcLbsacaWG2bGaaGikaiaadshacaaIPaGcdaqadaqaaKqzGeGaeqOSdiMaamyDaiabgkHiTiaaikdacqaH8oqBkmaaBaaaleaajugibiaaikdaaSqabaaakiaawIcacaGLPaaajugibiabgkHiTiaaikdacaWGcbGcdaWgaaWcbaqcLbsacaaIYaaaleqaaaGccaGLOaGaayzkaaaacaGLPaaajugibiaai6caaaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqG2aGaaeOmaiaabMcaaaa@78BD@

From (79) into (76) leads to,

+ A 5 u 2 + A 4 u v + A 3 v 2 + B 2 μ 2 v2 A 3 μ 2 2 v 2 +u( B 0 ( λ+ μ 1 +λu+βv )+ βv( A 3 v( βu2 μ 2 ) B 2 )+ A 5 λ+ μ 1 +λu+βv( λ u 2 +2 μ 2 v u( λ μ 1 +βv ) ) ) u +( v( B 1 A 4 βu )+2 A 5 u( λ+ μ 1 +λu+βv )+ B 0 ) + 1 2 ( 2 B 2 2 B 1 (t)2 A 5 β u 2 +4 A 3 v( μ 2 βu )+ A 4 u( 2λ+2 μ 1 +2 μ 2 +βu+2λu+2βv ) ) v C 0 =0.        (63) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeGbbaaaaOqaaKqzGeGaey4kaSIaamyqaOWaaSbaaSqaaKqzGeGaaGynaaWcbeaajugibiqadwhagaqbaOWaaWbaaSqabeaajugibiaaikdaaaGaey4kaSIaamyqaOWaaSbaaSqaaKqzGeGaaGinaaWcbeaajugibiqadwhagaqbaiqadAhagaqbaiabgUcaRiaadgeakmaaBaaaleaajugibiaaiodaaSqabaqcLbsaceWG2bGbauaakmaaCaaaleqabaqcLbsacaaIYaaaaiabgUcaRiaadkeakmaaBaaaleaajugibiaaikdaaSqabaqcLbsacqaH8oqBkmaaBaaaleaajugibiaaikdaaSqabaqcLbsacaWG2bGaeyOeI0IaaGOmaiaadgeakmaaBaaaleaajugibiaaiodaaSqabaqcLbsacqaH8oqBkmaaDaaaleaajugibiaaikdaaSqaaKqzGeGaaGOmaaaacaWG2bGcdaahaaWcbeqaaKqzGeGaaGOmaaaacqGHRaWkcaWG1bGcdaqabaqaaKqzGeGaamOqaOWaaSbaaSqaaKqzGeGaaGimaaWcbeaakmaabmaabaqcLbsacqGHsislcqaH7oaBcqGHRaWkcqaH8oqBkmaaBaaaleaajugibiaaigdaaSqabaqcLbsacqGHRaWkcqaH7oaBcaWG1bGaey4kaSIaeqOSdiMaamODaaGccaGLOaGaayzkaaqcLbsacqGHRaWkaOGaayjkaaaabaqcLbsacqaHYoGycaWG2bGcdaqadaqaaKqzGeGaamyqaOWaaSbaaSqaaKqzGeGaaG4maaWcbeaajugibiaadAhakmaabmaabaqcLbsacqaHYoGycaWG1bGaeyOeI0IaaGOmaiabeY7aTPWaaSbaaSqaaKqzGeGaaGOmaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaeyOeI0IaamOqaOWaaSbaaSqaaKqzGeGaaGOmaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaey4kaSIaamyqaOWaaSbaaSqaaKqzGeGaaGynaaWcbeaajugibiabgkHiTiabeU7aSjabgUcaRiabeY7aTPWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiabgUcaRiabeU7aSjaadwhacqGHRaWkcqaHYoGycaWG2bGcdaqabaqaaKqzGeGaeq4UdWMaamyDaOWaaWbaaSqabeaajugibiaaikdaaaGaey4kaSIaaGOmaiabeY7aTPWaaSbaaSqaaKqzGeGaaGOmaaWcbeaajugibiaadAhaaOGaayjkaaaabaWaaeGaaeaadaqacaqaaKqzGeGaeyOeI0IaamyDaOWaaeWaaeaajugibiabeU7aSjabgkHiTiabeY7aTPWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiabgUcaRiabek7aIjaadAhaaOGaayjkaiaawMcaaaGaayzkaaaacaGLPaaajugibiqadwhagaqbaaGcbaqcLbsacqGHRaWkkmaabmaabaqcLbsacaWG2bGcdaqadaqaaKqzGeGaamOqaOWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiabgkHiTiaadgeakmaaBaaaleaajugibiaaisdaaSqabaqcLbsacqaHYoGycaWG1baakiaawIcacaGLPaaajugibiabgUcaRiaaikdacaWGbbGcdaWgaaWcbaqcLbsacaaI1aaaleqaaKqzGeGaamyDaOWaaeWaaeaajugibiabgkHiTiabeU7aSjabgUcaRiabeY7aTPWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiabgUcaRiabeU7aSjaadwhacqGHRaWkcqaHYoGycaWG2baakiaawIcacaGLPaaajugibiabgUcaRiaadkeakmaaBaaaleaajugibiaaicdaaSqabaaakiaawIcacaGLPaaaaeaajugibiabgUcaROWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaGOmaaaakmaabeaabaqcLbsacaaIYaGaamOqaOWaaSbaaSqaaKqzGeGaaGOmaaWcbeaajugibiabgkHiTiaaikdacaWGcbGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGikaiaadshacaaIPaGaeyOeI0IaaGOmaiaadgeakmaaBaaaleaajugibiaaiwdaaSqabaqcLbsacqaHYoGycaWG1bGcdaahaaWcbeqaaKqzGeGaaGOmaaaacqGHRaWkcaaI0aGaamyqaOWaaSbaaSqaaKqzGeGaaG4maaWcbeaajugibiaadAhakmaabmaabaqcLbsacqaH8oqBkmaaBaaaleaajugibiaaikdaaSqabaqcLbsacqGHsislcqaHYoGycaWG1baakiaawIcacaGLPaaajugibiabgUcaRaGccaGLOaaaaeaadaqacaqaaKqzGeGaamyqaOWaaSbaaSqaaKqzGeGaaGinaaWcbeaajugibiaadwhakmaabmaabaqcLbsacqGHsislcaaIYaGaeq4UdWMaey4kaSIaaGOmaiabeY7aTPWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiabgUcaRiaaikdacqaH8oqBkmaaBaaaleaajugibiaaikdaaSqabaqcLbsacqGHRaWkcqaHYoGycaWG1bGaey4kaSIaaGOmaiabeU7aSjaadwhacqGHRaWkcaaIYaGaeqOSdiMaamODaaGccaGLOaGaayzkaaaacaGLPaaajugibiqadAhagaqbaiabgkHiTiaadoeakmaaBaaaleaajugibiaaicdaaSqabaqcLbsacaaI9aGaaGimaiaai6caaaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqG2aGaae4maiaabMcaaaa@42AB@

Eq. (80) can be written as a Hamiltonian function,

H( u , v ,u,v)= C 0 .       (64) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGibGaaGikaiqadwhagaqbaiaaiYcaceWG2bGbauaacaaISaGaamyDaiaaiYcacaWG2bGaaGykaiaai2dacaWGdbGcdaWgaaWcbaqcLbsacaaIWaaaleqaaKqzGeGaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOnaiaabsdacaqGPaaaaa@4C85@

Conclusion

In this study, the alpha-difference operator (a-DO) and difference integrals are introduced. We establish the fundamental analysis and discover that the a-DO is reversible. We further explore the “invariant” a-DO-exponential function, along with trigonometric and hyperbolic functions. As a result, the a-difference forms a closed calculus, analogous to the q-calculus. We apply the a-DO to the logistic and prey-predator models with harvesting, focusing on the effects of varying the parameters. In the first case, we observe a critical time (t=1) at which the population distribution changes its behavior, transitioning from a growing state to a decaying one. The same results hold for the prey-predator model. Another typical example is the exposed-infected-recovery system. We find exact solutions for the linear fractional difference dynamic system. In the nonlinear case, we obtain approximate solutions by implementing an iterative scheme, for which we prove a convergence theorem. Furthermore, we construct the Hamiltonian function for the prey-predator system using a quadratic invariant. This provides further insights into the energy conservation and stability properties of the system. Our research opens up new avenues for the application of the a-DO in various fields of science and engineering.

Declarations

Data availability: Data sharing is not applicable to this paper as no data sets were generated or analyzed during the current study.

Conflicts of interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Credit authorship contribution statement: H. I. Abdel-Gawad: Formal analysis, Methodology, Project administration, Writing - Original draft.

Ahmed. H. Abdel-Gawad: Formal analysis, Consulting, Writing - Revision.

  1. Khalil R, Horani A, Yousef A, Sababheh M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014; 264: 65-70.
  2. Bonyah E, Atangana A, Khan MA. Modeling the spread of computer virus via Caputo fractional derivative and the beta-derivative. Asia Pac. J. Comput. Eng. 2017; 4: 1.
  3. Chena W, Suna H, Zhanga X, Koroak D. Anomalous diffusion modeling by fractal and fractional derivatives. Comput. and Math. with Appli. 2010; 59: 1754-1758.
  4. Abdeljawad T, Baleanu D. Caputo q-fractional initial value problems and a q-analogue Mittag–Leffler function. Commu in Nonl.Science and Num.Simul. 2011; 16(12): 4682-4688.
  5. Bangerezako D. Variational q-calculus. J. Math. Anal. and Appl. 2004; 289(2): 650-665.
  6. Jackson FH. On -definite integrals, Quart. J. Pure Appl. Math. 1910; 41: 193–203.
  7. Abu Risha ME, Alnaby MH, Ismail MEH, Mansour ZS. Linear -difference equations. J. Anal. Appl. 2007; 26: 481-494.
  8. Polaine IL, Yang CC. Clune theorems for difference and -difference polynomials, J. London Math. Soc. 2007; (2): 76; 556-566.
  9. Bohner M, Chieochan R. The Beverton-Holt q-difference equation. J Biol Dyn. 2013;7(1):86-95. doi: 10.1080/17513758.2013.804599. PMID: 23768118; PMCID: PMC3759145.
  10. Kim JS. Tsallis entropy and entanglement constraints in multiqubit systems, Phys. Rev. A 81, Article ID 062328. 2010.
  11. Abdel-Gawad HI, Eldailami AS. On -dynamic equations modeling and complexity. Appl. Math. Model. 2010; 34: 697-709.
  12. Gao F, Yang XJ. Fractional Maxwell fluid with fractional derivative without singular kernel, Therm. Sci. 2016; 20: S871-S877.
  13. Debnath L. Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci. 2003; 54: 3413-3442.
  14. Singh J, Kumar D, Kumar S. An efficient computational method for local fractional transport equation occurring in fractal porous media. Comput. Appl. Math. 2020; 39: 137.
  15. Caputo M. Linear model of dissipation whose  is almost frequency independent-II, Geophys. J. R. Astron. Soc. 1967; 13: 529-539.
  16. Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl. 2015; 73-85.
  17. Yang XJ, Abdel-Aty M, Cattani C. A new general fractional derivative with Rabotnov fractional exponential kernel applied to model the anomalous heat transfer. Thermal science. 2019; 23(6B): 3711-3718.
  18. Yang CC, Ye Z. Estimates of the proximate function of differential polynomials, Proc. Japan Acad. Ser. A. Math. Sci. 2007; 83: 50-55.
  19. Tariboon J, Ntouyas KSK, Agarwal P. New concepts of fractional quantum calculus and applications to impulsive fractional -difference equations, Adv. Difference Equ. 2015; 18.
  20. Abdel-Gawad HI, Aldailami AA, Saad KM, G'omez-Aguilar JF. Numerical solution of -dynamic equations, m Numer Meth.Partial Diff. Eq. 2022; 38: 1162-1179.
  21. Molz FJ, Fix JG, Silong L. A physical interpretation for the fractional derivative in Levy diffusion, Appl. Math. Lett. 2002; 15: 907-911.
  22. Handam AH, Freihat AA. A new analytic numeric method solution for fractional modified epidemiological model for computer viruses, Appl. Math. 2015; 10: 919-936.
  23. Bulut H, Baskonus HM, Belgacem FBM. The analytical solutions of some fractional ordinary differential equations by Sumudu transform method, Abstr. Appl. Anal. Article ID 203875. 2013.
  24. Singh J, Kumar D, Kilichman A. Numerical solutions of nonlinear fractional partial differential equations arising in spatial diffusion of biological populations, Abstr. Appl. Anal. Article ID 535793. 2014.
  25. Lu Z, Chi X, Chen L. The effect of constant and pulse vaccination of SIR epidemic model with horizontal and vertical transmission, Math. Comput. Model. 2002; 36: 1039-1057.
  26. Kumar D, Singh J, Baleanu D, Qurashi MA. analysis of logistic equation pertaining to a new fractional derivative with non-singular kernel, Adv. Mech. Eng. 2017; 9: 1-8.
  27. Tawfik AM, Fichtner H, Elhanbaly A, Schlickeiser R. An analytical study of fractional Klein–Kramers approximations for describing anomalous diffusion of energetic particles. J. Stat. Pjhys. 2019; 174: 830-845.
  28. Choudhary A, Kumar D, Singh J. Analytical solution of fractional differential equations arising in fluid mechanics by using Sumudu transform method. Nonlinear Eng. 2014; 3: 133-139.
  29. Yusuf AS, Qureshi S. Mathematical analysis for an autonomous financial dynamical system via classical and modern fractional operators. Chaos Solitons Fractals. Article ID 109552. 2020; 132.
  30. Losada J, Nieto JJ. Properties of the new fractional derivative without singular kernel, Progr. Fract. Differ. Appl. 2015; 1: 87-92.
  31. Singh J, Kumar D, Hammouch Z, Atangana AA. Fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput. 2018; 316: 504-515.
  32. Ibrahim RW. Fractional complex transforms for fractional differential equations. Adv Difference Equ. 2012; 192.
  33. Abdel-Gawad HI, Tantawy M, Baleanu D. Fractional KdV and Boussenisq-Burgers equations, reduction to PDE and stability approaches. Math Meth Appl Sci. 2020; 43: 4125-4135.
  34. Kumar S, Ghosh S, Jleli M, Araci S. A fractional system of Cauchy-reaction diffusion equations by adopting Robotnov function Num. Meth for PD Equations. 2022; 38(3): 470-489.
  35. Lai J, Mao S, Qiu J, Fan H, Zhang Q, Hu Z, Chen J. Investigation progresses and applications of fractional derivative model in geotechnical engineering. Math Prob Eng. https://doi.org/10.1155/2016/9183296
  36. Abdel-Gawad HI, Baleanu D, Abdel-Gawad Ahmed H. Unification of the different fractional time derivatives: An application to the epidemic-antivirus dynamical system in computer networks. Chaos Solitons and Fractals. 2021; 142: 110416.
  37. Kar TK, Pahari UK. Modeling and analysis of a prey–predator system with stage-structure and harvesting. Nonl Anal Real World Appl. 2007; 8(2): 601-609.
  38. Kar TK. Modeling and analysis of a harvested prey-predator system incorporating a prey refuge. Journal of Comput and Appl Math. 2006; 185(1): 19-33.
  39. Das T, Mukherjee RN, Chaudhuri KS. Harvesting of a prey–predator fishery in the presence of toxicity. Appl Math Model. 2009; 33(5): 2282-2292.
  40. Javidi M, Nyamoradi N. Dynamic analysis of a fractional order prey–predator interaction with harvesting. Appl Math Model. 2013; 37(20–21): 8946-8956.
  41. Pal D, Mahaptra GS, Samanta GP. Optimal harvesting of prey-predator system with interval biological parameters: A bioeconomic model. Math Biosci. 2013; 241(2): 181-187.
  42. Abdel-Gawad HI, Abdel-Gawad AH. On a Global Continuum Model for COVID-19 Virus in the Presence of Vaccine and Induced Immunity. Stability and Initial States Control. Alex Eng J. doi.org/10.1016/j.aej.2022.08.022
  43. Abdel-Gawad HI, Tantawy M, Abdelwahab AM, Similarity solutions of a generalized inhomogeneous-nonautonomous (2+1)- dimensional Konopelchenko – Dubrovsky equation. Stability analysis Alex Eng J. 2022; 61(12): 11225-11237
  44. Abdel-Gawad HI. Approximate-analytic optical soliton solutions of a modified-Gerdjikov–Ivanov equation: modulation instability. Opt and Quant Elec. 2023; 55.
  45. Abdel-Gawad HI, Tantawy M, Abdelwahab AM. Approximate solutions of fractional dynamical systems based on the invariant exponential functions with an application. A novel double-kernel fractional derivative. Alex Eng J. 2023; 77: 341-350.
  46. Dekker K, Verwer JG. Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations. North-Holland, Amsterdam. 1984.
  47. Abdel-Gawad HI, Tantawy M, Abdelwahab AM. A new technique for solving Burger-Kadomtsev-Petviasvili equation with an external source. Suppression of wave breaking and shock wave. Alex Eng J. 2023; 69: 167-176.
 

Help ?